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netic tuning of the superconducting energy gap,
E, and k, as a function of pressure can be ex-
tracted, The existence of the 3pp and a well-de-
fined cutoff energy imply an upward curvature to
the excitation spectrum. In addition, from pulsed
time-of-flight measurements the group velocity
of these phonons at k, can be measured and com-
parisons with existing models for the excitation
spectrum can be made. These detailed analyses
and comparisons will be the subject of a future
publication. '

In summary we have direct evidence for the ex-
istence of the 3pp operative in an energy range up
to a cutoff E, in the excitation spectrum of He II.
This implies that upward dispersion does exist.
Our previous conclusions from pulsed measure-
mens were erroneous as we were detecting pho-
nons of energy E &E,. From detailed measure-
ments of this type we can directly compare re-
sults with various E(k) models for He II."
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W'e propose an instability of a vortex array in the presence of axial normal-fluid flow
in He II. This instability may be responsible for the influence of thermal counterflow on
ion-trapping cross sections reported by Cheng, Cromar, and Donnelly.

It is generally accepted that, upon rotation,
He II is threaded by an array of quantized vortex
lines parallel to the axis of rotation. ' This array
exhibits oscillation modes which in the long-
wavelength lixnit are similar to classical iner-
tial waves and in the short-wavelength limit are
related to the waves of isolated vortex lines.
Hall' predicted these modes on the basis of a set
of phenomenological two-fluid equations and was
able to observe the modes and, from their dis-
persion relation, to determine the vortex core pa-
rameter. In this paper we use the Hall' equa-
tions to investigate the normal modes of a vor-
tex array in the presence of axial normal-fluid
flow. We find that some of the modes become un-
stable when the velocity of the axial flow exceeds
some (rather small) critical value. This implied
disruption of the vortex array may be the explan-
ation for the anomalous ion-trapping results re-
ported by Cheng, Cromar, and Donnelly4 and

may be relevant for an interpretation of some re-
sults of Williams and Packard. '

We begin by considering an apparently unrelat-
ed situation, that of a vortex ring in counterflow. '
Viewed in the frame of reference in which the
superfluid is at rest at infinity, a, ring having ra-
dius R travels with velocity

V = (g/4mR) ln(BR /a —a ), tc = k/rn,

where h is Planck's constant, nz is the mass of
a helium atom, and a is the core parameter (- I
A). If the normal fluid is at rest in this frame,
dragging of the vortex ring through the normal
fluid causes the ring to lose energy steadily, and
hence to decrease in size. If, on the other hand,
the normal fluid is moving faster than (and in the
same direction as) the ring, it is clear that ener-
gy is being added to the ring and, because of the
peculiar dynamics of a ring, it will continue to
grow. Equation (I) then represents the critical
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velocity of counterflow for which a ring of radius
R becomes unstable for unlimited growth.

Simple models and several experiments sug-
gest' that vortex lines will not interact with nor-
mal-fluid flow parallel to the lines. However, if
a vortex line is distorted into a helix, it is appar-
ent that normal flow along the unperturbed vortex
line is not accurately parallel to the line any-
where. Such a helical distortion is a traveling
distrubance or normal mode of the line, whose
velocity depends only on the wavelength of the
disturbance, and not on its amplitude (for small
amplitudes). A vortex wave of small amplitude
is certainly not to be considered a small vortex-
ring-like disturbance, but the mechanism for
energy transfer from the normal flow to the vor-
tex line is similar. If the axial velocity of nor-
mal flow is larger than the velocity of some vor-
tex wave, that wave's amplitude will grow indef-
initely, until limited by some other factor. As
we shall see, the phase velocity of vortex waves
has a minimum value, giving rise to a critical
axial normal-fluid velocity equal to the. t mini-
mum value,

The simplest vortex-wave modes to picture
are those for which the wave vector is along the
rotation axis. These modes are circularly po-

k, = (20/v)'"

and at a frequency

(4)

If, instead of Eq. (2), we use an expression de-
rived by Baja Gopal, the critical velocity is re-
duced by about 10%.

A more detailed analysis is necessary if the
energy transfer is to be explicitly considered.
%e take the equation of motion of the superfluid,
suggested by Hali, ' in a coordinate system rotat-
ing at frequency 0:

larized waves in which each vortex-line element
executes circula. r motion (opposite in sense to
the rotation) in a plane perpendicular to the axis
of rotation, and the dispersion relation is sim-
ply'

m =20+ vk'.

Here v=(~/4w) 1n(b/a), where b is a length of the
order of the vortex-line spacing, and 0 is the ro-
tation frequency. This dispersion exhibits a Lan-
dau-like critical velocity

u, = ((u/k) = 2(2Qv)'",

at a critical wave number

DV, /Dt = V q + 2V, x 0 + nX x [Xx (V, —V„)]+ p7. x (V, —V„)—o.vA. x (X. V)X + v(1 —p) (X v)X, (6)

where V, and V„are the superfluid and normal-fluid velocities in the rotating coordinate system (aver-
aged in the sense discussed by Hall), X = V x V,+20, A. is a unit vector along X, n and p are proportion-
al to the mutual friction coefficients, and y is a collection of scalar terms. V„, p„and p„are taken
to be constants in the modes we wish to consider, so that the equation of continuity is simply

v- V, =O. (7)

The assumption that V„ is constant is probably justified in the experimental situation as discussed by
Andronikashvili et al.' Assuming that 0 =Qe, and V„=ue„we linearize Eqs, (2) and (3) and search
for solutions of the form cp =cp, exp[i(k r+~t)], V, =V„exp[i(k r+&A)]. It can be shown that such solu-
tions exist when

&uk' =io. [0(k'+k ') + k 'k'] —Puk k'a [(I —P)2k, 'k'(20 + vk, ')(20+ vk') —n'0'(k' —k, 2)'

(1 P) k k2[0(k2+k 2) ~vk 2k2]]. 1l2 (8)

where k'=k„'+k '+k, '. In the absence of mutual
friction, this reduces to

~ = + (k,/k) [(20 + vk, ') (20 + vk')]'".

The state of marginal stability is determined
by the condition

Im(v) =0,

which determines the critical velocity for a. mode

' of wave vectors,

u, =k '[(20+ vk, ')(20+ vk2)]'i2.

%hen the axial flow is at the critical value, the
frequency is given by Eq. (9) so that the condition
for instability can be started as follows: A mode
of wave vector k is marginally stable when the
projection of the normal-fluid velocity onto that
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wave vector is equal to the phase velocity of that
mode.

The critical velocity for modes with wave vec-
tors off-axis, that is oriented at an angle 0 with
respect to the rotational axis, decreases with in-
creasing 8, although it is never less than (2Qv)'".
This comes about because the phase velocity de-
creases more rapidly with angle than cos8. The
effect of orienting the normal-fluid flow at some
angle with respect to the rotational axis is to im-
pose a uniform transverse translation of the ar-
ray and to increase the critical velocity for the
instability, but the component of the critical ve-
locity along the rotation axis is unchanged. Nor-
mal flow transverse to the vortex array does not
contribute to the instability.

In the experiments reported by Cheng, Cromar,
and Donnelly, ' a thermal counterflow was im-
pressed along the axis of rotation in rotating he-
lium. The attenuation of a transverse negative-
ion beam due to trapping of the ions on vortex
lines —was found to decrease significantly as a
result of the counterflow. We should like to ex-
plain these results in terms of the vortex-array
instability. In a, thermal-counterflow experiment
(assuming Poiseuille flow for the normal fluid" ),
we can estimate the heat current necessary to be-
gin disrupting the vortex array by
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FIG. 1. Critical heat current for the onset of insta-
bility as a function of temperature. The points are the
heat currents necessary to restore 20% of the recover-
able ion currents, taken from smoothed data of Cheng,
Cromar, and Donnelly (Ref. 4), and the solid line is a
plot of the theoretical critical heat current from Eq.
(12). The error bars on the experimental points are
estimates of the scatter in the data.

ing in the z direction proceeds as exp(z/l), where
q, - ap, ST(20v)'i', (12)

l = —Re(~)/Im(co)k, = n '(v/2Q)'~.

where p, is the superfluid density, "S is the spe-
cific entropy, and T is the temperature. The
points in Fig. 1 are the measured heat currents
at which 20% of the recoverable ion beam was
restored and the solid line is a plot of Eg. (12),
where 0 is taken as 2.5 rad/sec. There is good
qualitative and fair quantitative agreement be-
bveen the theoretical and experimental results.

It should be pointed out that the instability be-
gins when the maximum normal-fluid velocity
reaches its critical value, where q is a measure
of the average counterflow velocity. In particu-
lar, any nonuniformity in the heat current would
tend to decrease the measured q, . We have only
considered the normal modes of an unbounded
system. Since the relevant wavelengths are
much less than typical cell dimensions, boundary
effects are likely to be small.

It is possible to use Eg. (8) to estimate the
growth rate of the instability. Taking o. «1 and
assuming P -0, one obtains, for a normal-fluid
velocity equal to twice its critical value, Im(~)
= —4Qe. The amplificati. on of a wave propagat-

Lock, 5 /2-KBT, (14)

where L, is the length of the undeformed line, e
is the energy per unit length, and 6 is the ampli-
tude of the helical deformation of the line with
wave vector k, . This leads to an amplitude -30
A at a temperature of 1 K. Mechanical vibra-
tions at 40 would probably be even more impor-
tant for providing the initial deformation. In any
event it is clear that for normal-fluid velocities
close to the critical velocity, deformations of
the vortex array on a scale as large as centime-
ters are certainly possible. Long before large-
scale deformations occurred, a vortex tangle
would probably develop which could relea, se the
trapped ions in a relatively short mean time.

We would expect an increase of second-sound

At a temperature of 1.4 K, this leads to a charac-
teristic length of -0.2V cm so that in 5 cm, an
amplification by a factor of more than 10' occurs.

The thermal fluctuations of a single vortex line
may be estimated by allowing an energy of KBT
in the critical oscillation mode:
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attenuation associated with the vortex-line insta-
bility. Cheng, Cromar, and Donnelly' report
that they saw no large effect on second sound in
heat currents large enough to affect ion-beam
attenuation. That part of their experiment was
designed to determine whether or not a vortex
array was still present and their experiment was
not sensitive to an increased attenuation. "

The instability discussed in this paper may
contribute to the anomalous lifetimes for nega-
tive ions on vortex lines at temperatures below
1 K observed by Douglass" as well as to the wav-
ing of vortex lines observed by Williams and
Packard, ' where the counterflow arises from
stray heat currents.

In summary, we have. shown that Hall's equa-
tions for a rotating superfluid, as well as simple
physical arguments, imply that the vortex array
becomes unstable for axial normal-fluid veloci-
ties greater than some critical value. This in-
stability may have been observed in several re-
cent experiments.

We should like to acknowledge useful discus-
sions with Professor R. J. Donnelly and Profes-
sor P. H. Roberts.
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