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The approach to and development of turbulence of low-Prandtl-number fluids in the
Rayleigh-Bernard geometry is studied with truncated Boussinesq equations. Semiquanti-
tative agreement is found with experimental results on helium for the turbulent threshold,
and for the intensity and frequency spectrum of fluctuations at slightly higher Rayleigh
numbers. It is argued that this transition conforms with abstract mathematical proposals
of Ruelle and Takens, but that other transitions violate their picture.

R= gdPAT/zv-,

o —= v/K.

(1)

(2)

In Eqs. (1) and (2), g is the gravitational con-
stant, & is the coefficient of thermal expansion,
H is the thickness of the fluid layer, ~7.' is the
temperature difference across the layer, w is
the thermal diffusivity, and v is the kinematic
viscosity.

It is well known from linear stability analysis
on the conduction profile of a fluid layer with
free surfaces' that when the Rayleigh number R
exceeds a critical value, R„convective motion
in the form of rolls develops. This critical Ray-
leigh number is independent of Prandtl number,
and is equal to 657. The analogous calculation
for a fluid subjected to rigid boundary conditions
yields R, = 1707.4

The purpose of this Letter is to discuss the
transition to nonperiodic fluctuations in a model
of an ideal thermal-convection system, and to
report on numerical studies of the fluctuations.
These computations are in reasonable agreement
with the experimentally observed fluctuations in
a real convection system. ' The calculated tran-
sition seems to agree iri character with the quali-
tative picture of the transition to turbulence sug-
gested by Ruelle and Takens.

Thermal eonveetion occurs in classical fluids
when the component of an externally imposed
temperature gradient along the direction of gravi-
ty exceeds a certain magnitude. This threshold
gradient is determined by the condition that the
buoyancy force to which it gives rise is sufficient
to overcome the dissipative forces in the fluid.

In an infinite fluid layer of uniform cross sec-
tion, the equations for the velocity and tempera-
ture fields contain two dimensionless parameters.
These parameters are the Rayleigh number, R,
and the Prandtl number, 0'

For a range of Hayleigh numbers above R„a
steady-state time-independent convective motion
develops. However, at sufficiently high Rayleigh
numbers, this steady-state motion becomes un-
stable to time-dependent motion. This transi-
tion has been studied experimentally by Ahlers, '
Krishnamurti, ' and Willis and Deardorff. ' Willis
and Deardorff discovered that the nature of the
transition to time dependence and its location in
Rayleigh number depended on the Prandtl number.
In the regime of low Prandtl numbers, e.g. , for
air for which 0 =0.71, Willis and Deardorff found
a transition to wavy convection rolls. This in-
stability and the succeeding ones leading to non-
periodic motion are the ones to be discussed in
this Letter.

The linear stability analysis for the wavy in-
stability was performed by Busse, ' who studied
the stability in the limit of vanishing Prandtl
number. He showed that in this limit the sys-
tem was extremely unstable; growing waves ap-
peared on the rolls just beyond the Rayleigh num-
ber at which the rolls first formed. Busse also
compared the linear stability analysis predicted
by a particular eight-Fourier-component trunca-
tion of the system with the exact results. He
found that the worst error produced by the trun-
cation was about 2(P/g of the exact result.

We have extended Busse's linear stability analy-
sis to finite Prandtl numbers by using the eight-
mode system which he proposed, and we have de-
termined the threshold for the waves analytically
by making an expansion in the wave number of the
wave along the roll. The wave number can be
chosen arbitrarily by imposing periodic boundary
conditions along the length of the roll. In particu-
lar, we find for the threshold

rr =1+4a'(v+1)/(13&+21);

r=R/R, , rr=Rr/R, .
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For values of the Rayleigh number larger than
that given in Eq. (3), the linear theory predicts
exponential growth of the wave. When the non-
linear corrections to the linear theory are in-
cluded, a Landau expansion of the following form
is obtained:

dA'/dt = nA'+ pA'+. . . ,

lie above the point of neutral stability in stress
("norma. l bifurcation"). The wavy instability en-
countered in low-Prandtl-number convection is
an example of normal bifurcation. One can ask
the question of how nonperiodicity evolves in sys-
tems which exhibit normal bifurcation. A quali-
tative answer to this question has been proposed
by Ruelle and Takens. The idea is that, as the

2cob' 13 1—+ 4c,16 2(o'+1) (6)
stress on a fluid system is increased, a succes-
sion of instabilities is encountered in which the

P = —0 (5o + 13)/4v (o + 1) . (7)

In Eqs. (5)-(7), all variables are dimensionless.
The variableA is the amplitude of the wave, co
is the speed of the roll at rT, &c is the difference
between the speed of the roll at x and its value at
r&, and k is the wave number of the wave along
the roll.

For small amplitudes, all but the first two
terms in the Landau expansion in Eq. (5) can be
neglected. Since the coefficient of the A' term is
always negative, the nonlinear corrections to the
linear theory will saturate the growth of the wave,
leading to a periodic motion with amplitude A,

( + /p)1/2

Thus, a stable limit cycle is obtained with an
amplitude that grows monotonically from zero as
the Rayleigh number is increased above threshold.
This behavior is consistent with the Hopf bifurca-
tion theorem. ' The Hopf bifurcation theorem
states that, if a pair of complex-conjugate eigen-
values cross the imaginary axis, there will be
a one-parameter family of limit-cycle solutions
in the neighborhood of the point of neutral stabil-
ity. This one-parameter family of limit cycles
can lie on either the upper or the lower side of
the point of neutral stability in stress. If the
limit cycles lie on the lower side of the point of
neutral stability ("inverted bifurcation"), they
are unstable and lead to finite-amplitude insta-
bilities and hysteresis phenomena. The three-
mode model of time dependence in high-Prandtl-
number convection which was studied by Lorenz'
is an example of inverted bifurcation. In this
model, there is an immediate transition to a
complicated, nonperiodic motion. Even though
the Lorenz model probably has little to do with
the actual transition in high-Prandtl-number
convection, it seems that this same feature of
immediate transition to turbulence is shared by
some other known examples of inverted bifurca-
tion like pipe and channel flow.

The other possibility allowed by the Hopf bi-
furcation theorem is one in which the limit cycles

degrees of freedom associated with harmonics
of the basic wave numbers increase in size and
complicate the time dependence of the system.
Ruelle and Takens predicted that, after the sec-
ond instability, the motion should generically
still be periodic. However, they proposed that,
after four instabilities, "strange attraetors"
should generically appear. Thus, Ruelle and
Takens predict steady-state nonperiodic motion
after four instabilities. The situation after three
instabilities is nebulous.

The Ruelle-Takens picture of the transition to
turbulence can be tested by calculating the time
dependence of a model which contains the funda-
mental wave along the roll and its first three spa-
tial harmonies. A consistent truncation of the
Fourier spectrum includes modes of the velocity
and temperature fields which have wave numbers
that obey the following conditions:

ill&1; lml&4; lnl&2;

lil+ l&l & 2 and even.
(8)

In Eq. (8), l is the wave number in the direction
perpendicular to the roll axis and in the layer,
measured in terms of the basic roll wave num-
ber. In the actual calculations, the basic roll
wave number was chosen to be the most critical
wave number which follows from the Rayleigh
stability analysis. The variable m is the wave
number along the roll axis measured in terms
of the fundamental wave number in this direction.
This fundamental wavelength was chosen to be
roughly the circumference of the cylinder used
in Ahlers's experiments. Finally, n is the di-
mensionless wave number in the vertical direc-
tion.

The truncation summarized in Eq. (8) leads to
a model system consisting of 39 Four ier compo-
nents (25 velocity and 14 temperature amplitudes).
The reason that four harmonics are allowed along
the roll axis and not in the other directions is
that the fundamental wave number in this direc-
tion was chosen to be much smaller than the
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fundamental wave numbers in the other two di-
rections. Thus, the damping due to the varia-
tions along the axis is small.

When the system of 39 first-order nonlinear
ordinary differential equations in time is inte-
grated on a computer, a succession of instabili-
ties is found in which the higher-lying modes be-
come large; the motion is strictly periodic until
the fourth set of modes becomes large. There
are two such instabilities. The first occurs at
~=1.45. At this Bayleigh number, the system is
still in the "mean-field" regime, i.e., the rolls
still have a preferred direction of rotation, and
the fractional variation in heat flux is about 0.001.

The second transition to nonperiodicity occurs
at ~=1.6. (The mean fields disappear at ~=1.5.)
The fractional variation in heat flux is about
0.015 and is strongly nonperiodic at r=1.6. The
fractional variation in heat flux at x =1.5 and 1.55
is about 0.0001 and is strictly periodic.

To test the Ruelle-Takens idea that four de-
grees of freedom are needed to obtain generic
nonperiodicity, the modes having m =4 may be
removed from the model system. When this is
done, the system reverts to exact periodicity at
~=1.6 and remains periodic at r=2 and 20.

The nonperiodic fluctuations which develop at
~=1.6 in the computer calculations are in rea-
sonably close agreement with the experimentally
observed spectrum for liquid helium (o' = 0.86).
Ahlers' found a transition to nonperiodic fluctua-
tions in the heat flux at r = 2.18. The fluctuations
were roughly 1% of the total heat flux. The worst
discrepancy is that Ahlers's fluctuations were 2
or 3 times faster than the calculated fluctuations.
Ahlers did not observe a periodic regime in the
heat flux below r=2.18. However, the existence
of such a regime seems to be indicated in the ex-
periments of Willis and Deardorff' on air (o.

=0.71). Rossby's experiments' on mercury (0'

=0.025), in which turbulence develops almost im-
mediately at &= 1, also exhibit the Prandtl-num-
ber dependence of the model discussed here.
However, Rossby's results seem to disagree
with those of Krishnamurti, ' who found that time
dependence in mercury did not develop until r
= 1.4.

Since the fluctuations and oscillations of the
velocity are much greater than those in the total
heat flux, valuable information could be provided
by performing experiments like those of Berge
and Dubois" above B, and in the neighborhood of
A& with low-Prandtl-number fluids. Experi-
ments with varying aspect ratio would also be

useful.
Theoretically, more numerical studies should

be performed and their reliability scrutinized.
In particular, the "continuum" of modes with
wave numbers close to those considered above,
and close to zero wave number, should be ex-
amined. When the system is large enough for
many of these modes to be significant, spatial
dephasing of the rolls will have to occur. The
frequency of these modes can provide an addi-
tional source of randomness in time that fits a
generalized Landau-Lifshitz picture. We think,
however, that the semiquantitative agreement
with experiment and the Ruelle- Takens picture
(as contrasted with that of Landau and Lifshitz
and Hopf) is not entirely a numerical artifact.
Preliminary calculations indicate that the band-
width of the continuum is only 0.05 of the roll
wave number at the transition to turbulence in
the calculations reported here.

After this work was completed we learned of
the unpublished work of Gough, Speigel, and
Toomre. " They also studied the properties of
slightly turbulent fluids with truncated Boussinesq
equations. Their results appear to be primarily
suited to high-Prandtl-number fluids and there-
fore complementary to ours. In the high-Prandtl-
number fluids, thermal boundary layers are more
significant and plumes are observed; far greater
resolution in the vertical direction than we em-
ployed is necessary to describe these effects.

We would like to thank Professor George Car-
rier and Professor Louis Howard for helpful con-
versations and Dr. Guenter Ahlers for providing
us with unpublished data and prodding us to try
to explain it.
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The anisotropy of the translational self-diffusion tensor in the smectic-A ((D~~)/Q)~)
= O.S) and smectic-C phases of terephthal-hie-4-n-butylaniline has been determined by
multipulse NMH. The experimental results are interpreted in terms of a pseudolattice
model with anisotropic potential barriers which seems to provide a better description
of the physical situation than the "bvo-dimensional-liquid" model.

In this Letter we report what we believe to be
the first measurement of the anisotropy of the
self-diffusion tensor of the liquid crystal mole-
cules in the smectic-A. and smectic-C phases.
The system investigated was terephthal-his-4-n-
butylaniline (TBBA).

Smectic-A and smectic-C liquid crystals' are
usually considered to be two-dimensional nemat-
ic liquids where the molecules are free to move
within the smectic layers. %'ithin these equidis-
tant layers the preferred direction of the long
axis of each molecule (i.e. , the molecular di-
rector) is parallel to the plane normals for smec-
tic-A systems, whereas it is tilted with respect
to the planes of the layers for smectic-C systems.
In both smectic-A and smectic-C liquid crystals
one would thus expect self-diffusion within the
layers to be much larger than perpendicular to
the smectic layers.

Murphy et al.' observed a large anisotropy in
the self-diffusion coefficient of the spherical im-
purity molecule tetramethylsilane dissolved in a
smectic-A. system, but no measurement of the
complete self-diffusion tensor of the smectic
molecules themselves has been performed so
far. Since only such a measurement can provide

a quantitative test of the validity of the two-di-
mensional "free-flow" model within the smectic
layers, it seemed worthwhile to use the newly
developed multipulse line-narrowing proton-spin-
echo technique for this purpose. The simple clas-
sical NMR technique for self-diffusion measure-
ments is simply not applicable' in liquid crystal-
line systems because of a too short spin-spin
relaxation time T,.

The pulse sequence used which is similar to the
one described earlier' is shown in Fig. 1. It con-
sists of a (i) Waugh-type multiple 90' rf pulse
sequence removing dipolar interactions: -I',

(t -P„—-2t -P„-t -P, - 2t -P,)„;(ii) a pulsed,
linear, magnetic-f ield-gradient sequence placed
between the rf pulses at such intervals that its
effect is not averaged out by (i); (iii) a slow, re-
focusing, Carr-Purcell train of 480' rf pulses.

The echo maxima are given by the same ex-
pression as in Ref. 3. The components of the
self-diffusion tensor D were determined by ob-
serving the dependence' of the spin-echo maxi-
ma at 87 msec on the strength and orientation of
the field gradient 0= grad IIz. The width of the
gradient pulses varied between 2 and 8 p, sec and
the interval t between the 90' rf pulses at 60 MHz

90'

Y x

-G

FIG. 1. Pulse sequence used for the determination of the translational self-diffusion tensor in systems with short
spin-spin relaxation times T 2.


