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The spontaneous generation of reversed fields in toroidal plasmas is shown to be a
consequence of relaxation under constraints. With perfect conductivity a topological
constraint exists for each field line and the final state is not unique. With small depar-
tures from perfect conductivity, topological constraints are relaxed and the final state
becomes unique. The onset of the reversed field and other features of this model agree
well with observations on ZETA.

One of the best known methods for magnetic
confinement of plasma is the toroidal pinch as in
ZETA. ' In such experiments a toroidal field J30
is created by external coils and a toroidal cur-
rent I is induced in the plasma. The pinch effect
associated with this current produces the plasma
compression whose magnitude depends on the ra-
tio 2I/aB, —= 8 (where a is the minor radius of the
torus).

A remarkable feature of these experiments is
that after an initial, violently unstable, phase the
plasma frequently relaxes into a "quiescent"
state in which it appears to be largely stable.
Furthermore, when the pinch ratio 8 exceeds
some critical value this relaxation is accompa-
nied by the generation of a reversed toroidal field
in the outer regions of the plasma.

This Letter outlines a theory of the relaxation
of toroidal plasma which appears to account well
for this remarkable behavior and which predicts
the critical value of 0 for the generation of the
reversed field. It can also account for other phe-
nomena observed in toroidal pinches.

In this theory the plasma is regarded as a con-
ducting but viscous fluid enclosed in a rigid, per-
fectly conducting, toroidal vessel. The initial
state is arbitrary except that both the magnetic
field and current are tangential to the conducting
wall. The system is not in stable equilibrium and
when released will therefore move (usually vio-
lently) and dissipate energy before coming to rest.

Only when its energy is a minimum is it incap-
able of further rapid movement. Hence the final
state must be one which makes the energy a min-
imum subject to any constraints which are im-
posed on the allowed motion. ' The major prob-
lem, of course, lies in determining and applying
these constraints.

For simplicity it is assumed here, as is in-
deed the case in most experiments, that the plas-
ma internal energy is negligible compared to the
magnetic energy W = J(B'/2)d& which is there-
fore to be minimized. The inclusion of plasma
energy will be discussed elsewhere

The constraints which must be applied to the
variations in B (without which the minimum
would be B=O) arise from the fact that in a per-
fectly conducting fluid variations in the magnetic
field must satisfy

9B/st —Vx (vxB) =0,

where v is the fluid velocity.
As is well known, Eq. (1) means that lines of

force may be labeled by the fluid elements on
them and so be regarded Bs moving with the fluid
velocity. Since this velocity is continuous, field
lines cannot break or coalesce (except where B
=0 which we exclude). All topological properties
of the field lines are therefore invariant; e.g. , if
two closed field lines are initially linked n times,
then they must remain so linked at all times.

These topological constraints can be expressed
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through the vector potential, B =V&A. From Eq.
(1) this must satisfy

aA/af = v X B + V)I, (2)

where p is an arbitrary gauge. Since the energy
is to be minimized over all fluid motions it is
clear that Eq. (2) imposes no restriction on the
component of aA/at perpendicular to B. It might
appear that the parallel component is also unre-
stricted on account of the arbitrary gauge. How-
ever y must satisfy the magnetic differential
equation

B vy = B aA/at,

and is therefore single-valued only if aA/at is
constrained so that

"dl- aA " dS - aA

„I B at "„&Iv+1 at'
vanish on any closed field line and on any mag-
netic surface, respectively.

These constraints can be summarized as fol-
lows: For every volume V bounded by field lines
the quantity

K-=f A BdT, (3)

is an invariant of the motion. When the field
lines are closed there is one invariant for each
line (the volume V then being an infinitesimal
flux tube); if the field generates magnetic sur-
faces there is one invariant for each surface.
The invariance of K for any volume V bounded
by a flux surface follows directly from Eqs. (1)
and (2). Furthermore the argument can be re-
versed to show that if & is invariant for every
flux tube then aA/at is expressible in the form
u & B+V'p. Consequently all the restrictions on
aA/at imposed on Eq. (1) are embodied in the in-
variants. [Note however that u need not be the
same as the fluid velocity v; this is because the
velocity of lines of force is not unique. ]

The state in which the magnetic energy is a
minimum for all variations 5A which leave the
invariants unchanged is given by

VXB =A. (a, b)B,

where A. (a, 5) is any function constant along field
lines (B ~ VA. =0). Hence when all the constraints
appropriate to a perfectly conducting fluid are
observed, the state of minimum magnetic energy
is some force-free configuration. Exactly which
force-free configuration can only be found by de-
termining A, from the initial values of the invari-

ants K.
Now let us consider how the situation is modi-

fied by small departures from the perfect-con-
ductivity approximation of Eq. (1). It is well
known, from studies of resistive instabilities"'
and elsewhere, that the main consequence of any
small departure from perfect conductivity is that
topological properties of the magnetic field are
no longer preserved and lines of force may break
and coalesce. It seems inevitable that during the
violent phase of the diffuse pinch, resistivity, in-
ertia, microturbulence, or some other departure
from perfect conductivity will bring about such a
relaxation of the topological constraints.

Once lines of force may break and coalesce it
clearly makes no sense to suggest that JA B be
an invariant for each line of force'. However,
changes in field topology are accompanied by on-
ly very small changes in the field itself and the
sum of fA B over all field lines will be almost
unchanged so long as departures from perfect
conductivity are small. The effect of the topo-
logical changes is merely to redistribute the in-
tegrand among the field lines involved. Thus the
integral fA ~ B over the total volume of the sys-
tem will still be a good invariant even though
JA 8 on each flux tube certainly is not.

The final state of relaxation, therefore, will
now be the state of minimum energy subject only
to the single invariant

Ko= f A ~ Bdv, (6)

where Vp is the total volume of the system. This
state is easily determined, and is given by'

QxB= pB, (6)

where p, is now a single constant having the same
value on all field lines. Thus, when topological
constraints are relaxed, the final state is no long-
er any force-free configuration but a specific
one completely determined once p, and the scale
factor multiplying the solution of Eq. (6) are
known. These are obtained as follows. The solu-
tion of Eq. (6) is B=B,h(iLr, ga, iLR), where h is
the normalized solution and a, R are the dimen-
sions of the toroidal container. Hence the invar-
iant takes the form K, = (B,'/p )g(pa, pR) and the
toroidal flux 0, which is also invariant, takes
the form (Bo/p') f (pa, p,R). The value of p is
therefore obtained from the ratio K,/O'. Clearly
+p and 4' together complete ly determine the final
state. [It may be shown that K,/4' is essentially
the "volt-seconds" stored in the plasma so that p,

is related to the ratio (stored volt-seconds)/(to-
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roidal flux). I

One may now return to the question of the ap-
pearance of the reversed toroidal magnetic field
in the relaxed state. As has been shown, for a
given toroidal aspect ratio this can depend only
on the value of p, . If the toroidal curvature is
neglected the axisymmetric solution of Eq. (6) is
B, =B,J,(pr'), Be =B,J,(pr) (where r, g, z are
cylinder coordinates). Reversal of the toroida1
(B,) field therefore occurs when pa&2. 404. In
terms of the experimental pinch parameter 8 this
point corresponds to 8=1.202, which is in satis-
factory agreement with the value 0 =1.4 observed
for the onset of the reversed field in ZETA. '

It should be noted that although the state of
minimum energy is described by Eq. (6), it does
not follow that the axisymmetric solution must
be this state; for Eq. (6) may have other solu-
tions with lower energy. ' This point will be dis-
cussed in detail elsewhere. It turns out that the
axisymmetric solution is indeed the lowest ener-
gy state compatible with specified values of Kp
and 4', when K,/4' is less than a critical value,
but beyond this value the lowest energy state is
a helical solution. The transition occurs at pa
= 3.11 (or 8 ~1.6) which is also the boundary for
resistive instability of the axisymmetric state. "
However, unlike linear instability theory, the
present theory determines the amplitude of the
helical deformation and the change in (9 which ac-
companies the transition from axisymmetric to
helical state.

In conclusion, the behavior of toroidal pinches
is well accounted for by the general principle
that plasmas relax to a state of minimum energy
subject to all relevant constraints. If the plasma
were Perfectly conducting, lines of force would
preserve their identities and there would be a
topological constraint associated with each field

line. In this case the final state may be any equi-
librium. However in the presence of small de-
partures from perfect conductivity, topological
constraints on lines of force are relaxed; they
no longer retain their identity and consequently
only one invariant remains. The final state is
then a unique configuration depending only on the
ratio Ko/4' or equivalently on the pinch ratio 8.
When 0 exceeds -1.2 this final state is one with

a reversed toroidal field, in agreement with ob-
servation. When 8 exceeds a second critical val-
ue -1.6 the final state is helically deformed.

The author is grateful to Dr. R. S. Pease for
many helpful and stimulating discussions on this
topic.
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