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Radiative Charge Transfer from H Atoms by Fast Ions
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The cross section for radiative electron transfer from H atoms to bound states of an
incident ion is calculated for velocities much greater than the orbital velocity of the
captured electron. It is shown to dominate over the Coulomb-charge-exchange cross
section for E & 9 MeV per incident nucleon.

The process of charge transfer from R target
atom to an incident ion by the Coulomb interac-
tion has been the subject of considerable theoreti-
cal effort, particularly with regard to the asymp-
totic behavior of the cross section at high veloci-
ty. ' lt has been recognized from the outset' that
the transfer of charge by a radiative process
will provide a competing channel although its
contribution was estimated to be small at high
velocity. Since that time attention has been most-
ly directed towards the evaluation of cross sec-
tions for this process at very low velocity, in
the region of thermal encounters. ' For relativis-
tic projectile energies the radiative capture of
free electrons has been discussed with the theory
of the relativistic photoeffect. ' It has been point-
ed out that charge exchange in metal foils for suf-
ficiently high incident energies is due predomi-
nantly to radiative electron capture. Recent ob-
servations' ' of the radiation emitted in colli-
sions of fast charged ions with gases have indi-
cated a broad x-ray band which has been attribut-
ed to the process of radiative charge transfer of
bound electrons. It is our purpose in this Letter
to examine the nonrelativistic limiting behavior
of the cross section for this process under con-
ditions where the velocity of the incident ion'is
much greater than the initial and final orbital
velocity of the electron which is captured.
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FIG. 1. An ion j. moving in a straight line is incident
on a hydrogen atom 2.

Throughout we will work in atomic units.
The probability for transferring an electron

from a hydrogen atom 2 to an incident ion 1 in a
collision at impact parameter b and velocity v
(see Fig. l), with concomitant emission of a pho-
ton of frequency co, is

d 'P (cu, b)/d'h =
(f ~

', (l)

where k is the photon propagation vector and d'k
=k'dkdQ with k =&u/c. As we will subsequently
restrict discussion to high velocities, we will
adopt the impact-parameter formalism' to de-
scribe the ion-atom collision. In addition we will
consider only the first-order interaction with the
radiation field and assume the dipole approxima-
tion of replacing the factor exp(ik r) occurring
in this interaction by unity. So long as the impact
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velocities do not approa. ch the velocity of light
this approximation alters only the frequency spec-
trum and not the integrated cross section of in-
terest here. Treating the interaction with the ra-
diation field as small compared with the Coulomb
interactions between the electron and the colliding
nuclei and proceeding in a manner similar to the
derivation of the distorted-wave Born approxi-
mation, ' we find for the amplitude f for radiative
charge transfer the expression

f=( 2&(u) 'f dte' '(0 (t)Ip eI4" (t)), (2)

where p is the momentum operator of the trans-
ferred electron and e is the polarization vector
of the emitted photon. Here, 4'(t) and @ (t) are
full solutions of the scattering problem

M' = i4'

satisfying boundary conditions appropriate to the
initial and final states of the transferred elec-
tron, respectively. The Ha, miltonian H is the
electronic time-dependent Hamiltonian of the im-
pact-parameter formalism,

H = —2 V'+ V, (x) + V,( r —R(t)), (4)

with R(t) =b+vt and where V„V, are the Coulomb
interactions of the electron with nuclei 1 and 2,
respectively. For high velocities we expand the
exact wave functions +' in atomic states centered
at each nucleus and retain only the initial and fi-

nal atomic states in this expansion; i.e. ,

+' -=~, '(t)x, (t) + ~.'(t)x. (t)

Here, X,(t) = y, (r) exp(- ie, t) is the initial wave
function of the electron in a stationary state of
energy e, about nucleus 2 and X, (t) is the final
stationary state of energy &, about nucleus 1,
which is moving with a constant velocity v with
respect to an origin fixed in 2; i.e. ,

y, (t) = y,(r —R(t)) exp(iv r —ie, t —2 iv't) .

The substitution of the two-state expansion (5) in
the expression (2) gives four terms of the form
a;~a, ( X;I p eIy;). The term with i =2, j =2 has
a vanishing dipole moment and does not contrib-
ute. In solving (3) with (4) a.nd (5) we approxi-
mate the coefficients a by their values taken
to first order in the interactions V, or V, . Then
the term with i =2, j =1 is of second order and
can be neglected. The term with i = 1, j = 1 is of
first order and provides a dipole moment
(y, I p eI)t, )=v'e. The term with i=1, j=2 is of
zeroth order so that the amplitude becomes

f= (2m'(u) '—f'dte' '(()t, Ip eIX,)+a,'v e), (6)

with

~,'= —~ f „&x,(t')Iv, (t')Ix.(t')) «'

to first order. A partial integration with respect
to time of the second term in (6) gives for v &0

f = (e/2mtru) f dtexp[g(~ -we+-,' v )t](y,(r —R(t)) exp(iv r)I p+(v/&u)V, (t)I y, (r)), (7)

where we have put && =- &, —&,.
The first term in the matrix element of (7) is the Born approximation for radiative charge transfer,

whereas the second term describes the radiation of the electron in the state X, of the moving atom.
The second term can be transformed by the substitution V, =H, +2 ~', where H, is the electronic Ham-
iltonian for atom 1: i.e., H, y, =&,y, . Then, after Fourier transformation of the wave functions to the
momentum representation, differential operations can be performed to yield

f = —I(2v)'/v(u]e fd'q 6((u —ae —2 v'+q v) exp(iq b)y, *(q-v)y, (q)$q —(v/~)[&, —a(q —v)']} . (8)

Since the momentum wave functions y, ,(q) are peaked a, round q=0 there are two regions where the
integrand in (8) is large, namely at q= 0 and q= v. These regions give rise to two contributions to f,
centered around (u = v'/2+&@ and &u =- U'/2+6. e, respectively. Clearly, when v'/2 &S,e, the only physi-
cally important contribution is that which peaks around ~ = ~'/2+&@. This contribution is supplied by
q=0, i.e. , by the second term in the curly brackets of (8), which arises from the second term in the
matrix element of (7). When v'/2»&e we can further approximate f by putting ~ = 2 v' and y, *(q-v)
—= y, *(-v) for q= 0 so that (8) reduces to

f -=—
I

(2m)'/V'(u] e vy, *(-v) f d'q 5(~ —b.c —2 v'+ q v) exp(i q b)y, (q) . (9)

We have shown that in a laboratory-fixed origin for high-velocity impacts, the dominant contribution
to the radiative-charge-transfer spectrum is provided not by the Born approximation, but by the sec-
ond term on the right-hand side of (6). However, with respect to a moving origin fixed on nucleus 1,
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the Born approximation to the radiative-charge-transfer amplitude is

f ' —= (2w'~) '1 dt exp[i(~ —&e —a U') tj ( y, (r')
~

p' e
~ q, ( r '+ R(t) )exp(- i v ~ r)),

where primed quantities refer to the moving origin. After a Fourier transformation to the momentum
representation followed by the same approximations as led from (8) to (9), the expression (10) for f'
becomes identical to the expression (9) for f. Hence, since for high velocity the dominant contribution
to the charge-transfer spectrum occurs near ~ = & v', the Born approximation is correct only when it
is made with respect to the moving origin. In contrast, the two-state approximation obtained by sub-
stituting (5) in (2) is invariant under Galilean transformation.

The cross section for radiative charge transfer is obtained by integrating (1) over all impact parame-
ters. Using the approximation (9) for f in (1), putting d'k= (&u'/c')dudQ, and averaging over polariza-
tions, we find

do/da dA = [(2m) /c ] va) sin 8 ( y, (-v) ~' Jd q ~ y, (q) ( 6((g —b.c -'- g' ~ q v), (11)

o = (2'/3c') (Z, /v)', (13)

in units of ~aB', where a& is the Bohr radius. In
the same velocity region the cross section for
Coulomb charge transfer from H atoms to the
ground state has the approximate form'

o c = 0 3(2ia/5)Z~5/v"

in units of ~aB'. Hence, for sufficiently large v,
the radiative-transfer cross section dominates
over the Coulomb-transfer cross section. The
two cross sections become of equal magnitude
(=—Gx10 "Z, '~as') when a velocity corresponding
to an impact energy of -9 MeV/nucleon is
reached.

where 0 is the angle of observation with respect
to the fixed direction v. The integral in (11) is the
Compton profile provided by the momentum dis-
tribution of the target electron.

The total cross section for radiative charge
transfer is obtained by integrating the differential
cross section (11) over ~ and 0 and again neglect-
ing &e compared with v'/2 to obtain

o = (2'm'U'/3c')
i y, (-v) i'.

The only effect of the retention of the term exp(ik
' r) in the interaction with the radiation field is
to replace q .v in the 5 function of (11) by (q+ k)
~ v. This alters the spectrum (11) but not the in-
tegrated cross section (12) so long as u/c «1.

Considering the simplest example of radiative
charge transfer to the hydrogenie ground state
of a bare nucleus of charge Z„we find the cross
section to be

It should be noted that for a resonant process
where he =0, or when v'/2»b, e for a nonreso-
nant process, the photon energy is provided sole-
ly by the translational kinetic energy of the inci-
dent ion so that the radiative charge transfer pro-
vides a mechanism for the indirect conversion of
ionic translational kinetic energy into electro-
magnetic energy. In such a radiative process the
ion loses an energy v' (a.u. ), which, on the aver-
age, is shared equally between the photon and the
translational kinetic energy of the captured elec-
tron.
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