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I have found a type-N gravitational field for which the principal null direction has non-
zero twist and which admits exactly one Killing vector.

In a recent review' of the known exact solutions
of the Einstein fieM equations, Kinnersley point-
ed out that not a single type-N solution with twist-
ing rays' was known, though the type-N problem
for zero twist had been completely solved' over
a decade ago. I have now obtained a particular
type-N solution with twist. It is my hope that
this new solution will further the understanding
of gravitational waves with twisting rays. I will
now describe the derivation, except for some
lengthy techniques which can be extended to the
search for other type-N solutions with twist and
which will be published elsewhere.

The derivation employs a null tetrad' which con-
sists of one-forms'k, rn, t, I,* such that k is a
principal null vector, k and m are real, t* is the
complex conjugate of t, and k m=1 I*=I. For
a type-N vacuum, this null tetrad can be chosen
so that the corresponding connection forms have
components

(V„k,)t' = V„g =z(t. +Ak„),

(vp, )m' =(v„t,)ts*=o,

(V„m, )t '+ = krl„r„,

where &, z, A, and h are complex scalar fields.
The real and imaginary parts of z are the diver-
gence and the twist, respectively. Let

Let

dy = —d7/T.

g —eXT

Then Eq. ('7) is equivalent to the statement that
& is a uniform field, and Eqs. (5) and (6) i~ply
d(exk+2&p do) =0. Hence, there exists a. scalar
field $ such that d] =exk ~2~pdc.

p, c, $, and u serve as our coordinates. The
solution is given by

k =e x(d$ —2txpd(x),

m =du+3i7 (A*df —Ad/*. ),

I;=z 'd& -Ak,

be x bp& f(y) y ~/

A=v2p '[(y —i)f f' —-', J,
k =(3ia/4)(g —it p') ',

(12)

(13)

(14)

(15)

The only nonze'ro components of the Riemann
tensor are given by

where f is a function of y, f'=df/dy, such that

z =u+i7'~ W2f =p+i (Tq (4) m"t'*mrt'+It „„,=4zex ak/a&. (16)
where u, ~, p, and c are real. Then Eqs. (1) and
(2) imply that the two-form dk is given by

dk =k(A*df +Ad&*) —2v. dp der (5)

k(A*d&+Adf*) =k d)t, (6)

The particular case for which I have found a solu-
tion is defined by the statement that the first
term on the right-hand side of Eq. (5) is equal to

Since none of the scalar coefficients in Eqs. (9)
to (11) depends on c, the tangent vector &/&c is a
Killing vector.

Any even solution of Eq. (15) has zeros only at
y =+ 5.5, as determined by a numerical integra-
tion; any odd solution has only the one zero at y
=0. The asymptotic form of any solution of Eq.
(15) at large y is a constant times y'I' or y'I .
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If the function f is such that arbitrarily large ly[

are admissible in our coordinate system, then
we fix the multiplicative factor in f (and, there-
fore, in b, , $, and exp)t) by specifying that the
asymptotic values be lhyI'~' or IbyI' '. Then, if
the asymptotic form is I4y I' ', the limiting case
4 =0 corresponds to a Minkowski space with Car-
tesian coordiantes x„which are related to ours
by 2u=x, —x„up =x„uo =x„and 2v =2(x, +x,)
+u(p'+ o'), where v =4)'~'/7. Similar relations
hold when the asymptotic form is Ihyi' '.

I thank Dr. Fred Ernst for verifying the solu-
tion, for the numerical integration of Eq. (15),
and for the relations of the coordinates to Carte-
sian coordinates when 6 =0.

~W. Kinnersley, in Proceedings of the Seventh Inter-
national Conference on Gravitation and General Rela-
tivity, Tel Aviv, Israel, 24-28 June 1974 (to be pub-
lished) .

For a review and bibliography on algebraically spe-
cial gravitational fields with twisting rays, see Ref. 1.
Equation (49) of Ref. 1 contains relatively simple forms
of the type-N field equations due to A. Exton (private
communication) .
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The study of the vacuum polarization for strong magnetic fields reveals the existence of
a massive, longitudinal photonlike resonance for magnetic fields exceeding B =m2c /e .

The existence of strong magnetic fields in the
vicinity of collapsed stars has brought into focus
the question of the dispersive properties of the
vacuum in the presence of strong magnetic
fields. ' ' Such dispersive features become sig-
nificant when the magnetic field reaches and ex-
ceeds the critical field value B =m'c'/he =4.41
&10' G. In this Letter a novel feature of the
electromagnetic vacuum is pointed out: When
the magnetic field strength exceeds a second crit-
ical value B, of the order of (hc/e')B~, a. mas-
sive, longitudinal photonlike resonance appears
whose mass value roughly coincides with the en-
ergy of an electron-positron pair occupying the
lowest Landau level. For magnetic field values
in the vicinity of the critical field the photon is
heavily damped, but for increasing field strengths
the lifetime rapidly increases: Typically for B

&0&p 7 2w+ & 5 X Q) 7 + &0 sec.
The existence of the massive photon is inferred

from the study of the longitudinal dispersion rela, —

tion

e (k, (u) -=1 + n (k, (u) = 1 —(o 'll „(k,(o ). (2)

We calculated the vacuum polarization in the pres-
ence of an arbitrarily strong, uniform magnetic
field, to lowest order in e'. The photon momen-
tum is restricted to be parallel to B. For small
momenta the A dependence of 033 is not signifi-
cant and in this Letter we consider the k-0 lim-
it only. II» can be obtained by standard methods,
using the appropriate Green's functions for elec-
trons in a magnetic field. ' The unrenormalized
value of II33 is given by

27T n- p g ~ 6'p~(4P —46&~ )

e(k, (o) =0,

with e(k, u), the longitudinal "dielectric function, "
and a(k, cu), the longitudinal polarizability of the
vacuum, being related to the regularized longi-
tudinal vacuum polarization Ii»(k, &u) by


