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We show that the ground state of Ti®* in CsAl alum is a quasi-I'g state with a very small
trigonal splitting. A spin Hamiltonian for this quasi-T'g state is derived and used to de-
scribe the experimental EPR anisotropy. The near cancelation of the trigonal splitting is
due to the presence of a dynamic Jahn-Teller effect.

The crystal structure of CsAl alum [CsAL(H,0),-
(SO,),-H,0]is cubic with space group Pa3 and
four formula units per unit cell.’ The four
[A1(H,0),]®* octahedra are slightly flattened with
trigonal symmetry 3. Recent work on Ti** sub-
stituting for A1** in CH,NH,Al alum®3 indicates
that the T';, ground state of Ti’" in CsAl alum
will show a strong Jahn-Teller coupling to the
I'; ; vibrational mode. This Letter reports an un-
usual EPR spectrum and anisotropy for Ti®*as a
substitutional impurity for Al in CsAl alum which
are interpreted below in terms of a quasi-T,
quartet with a very small trigonal splitting. The
trigonal crystal field in CsAl alum is substantial,’
and the almost complete elimination of the effect
of this field is shown to be a direct consequence
of the Jahn-Teller coupling of the 1“5g electronic
state to the I';, vibrational mode. It arises be-
cause the trigonal splitting to first order, which
is reduced by the vibronic reduction factor,® is
comparable with and opposite in sign to the sec-
ond-order contribution, which involves the excit-
ed I“sg state and is not reduced by any vibronic
factor. This Letter also reports the first EPR
spectra of and corresponding spin Hamiltonian
for a quasi-TI; quartet with trigonal symmetry.

The EPR measurements were performed at
+9.46 GHz and 2.5 K on single crystals of CsAl
alum doped with 0.1 at.% Ti, which were grown
from aqueous solution in an inert atmosphere to
prevent the oxidation of Ti®*. Since the spin-lat-
tice relaxation time is short, a good EPR spec-
trum could only be observed at temperatures be-
low 3 K, and four sets of three lines were identi-
fied, each set corresponding to one of the four
symmetry-equivalent sites.®> A schematic ener-
gy-level diagram is shown in Fig. 1 to illustrate
the quasi-I', ground state. The effective trigonal
Hamiltonian for a I';, triplet coupled to a I’y vi-
brational mode can be written as

Htrig:%('yv_vlz/A)[3l22_l(l+l)]’ (1)

v’ is the admixture of the T,

where v is the trigonal splitting of the I’ g state
to first order, y is the vibronic reduction factor,
and the I';, state
by the trigonal field, A is the cubic-field split-
ting, and the orbital angular momentum corre-
sponds to I=1.° This equation is identical to Eq.
(16) of Abou-Ghantous, Bates, and Stevens® when
the third term in their Hamiltonian, which is
negligible by comparison with the first two, is
omitted. Since the first-order trigonal-field pa-
rameter v for Ti®*in CsAl alum is positive and
since yv is comparable with v’2/4, there is an
almost complete cancelation of the effective tri-
gonal field. The spin-orbit I'y ground state is
split slightly by the residual trigonal field, pro-
ducing a quasi-I; quartet with three distinct AM
=+1 EPR transitions. Since the EPR transitions
are between vibronic states they will show signi-
ficant strain broadening, although only the + 3
-+ & transitions will be asymmetrical. Figure 2
is the first-derivative representation of the EPR
spectrum of Ti®"* in CsAl alum measured with the
magnetic field parallel to the [111] axis. The
three AM=z1 transitions were identified and
labeled as A, B, and C which correspond to the
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FIG. 1. Schematic energy-level diagram of Ti%*,
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FIG. 2. First-derivative representation of EPR spec-
trum of Ti** in CsAl alum measured at 9.46 GHz and
2.5 K with H along a [111] axis. The labels are A: — 3

1, . 3 a1, . 1 1
=33 B: +5+=+3; C: taes—3.

-%=-%, +%—+% and + § = - & transitions,
respectively. The identification of the — &~ - &
transition was made by considering the relative
intensity increase at lower temperatures. Be-
cause of the asymmetrical line shape the extrema
of lines A and B as indicated in Fig. 2 were em-
ployed to locate their positions; the position of
the symmetric line C was located by the zero
crossing. Although lines A and B show the ex-
pected asymmetrical line shapes, the structure
of the spectrum is complex because of the pre-
sence of weak unidentified transitions. The weak
transitions on the low-field side do not corre-
spond to the AM =12 and +3 transitions. Figure
3 shows the experimental angular EPR spectra
~measured in a {110} plane. The examination of
the angular spectra measured in {111}L and {110}
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FIG. 3. Experimental angular EPR spectra with H in
{110} showing equivalent sites of Ti’* in CsAl alum.

planes confirmed the presence of four symmetry -
equivalent sites with the symmetry axes along
(111) directions. Because of the weak intensi-
ties, the EPR spectra for any site could only be
traced in the angular range of + 30° to — 30° with
respect to the symmetry axis.

Bleaney first employed a group-theoretical
argument to introduce an augmented spin Hamil-
tonian” for a I’y quartet which, in addition to the
usual Zeeman term gy H-S, included a third-
order spin-angular-momentum term fug#,S,2
+H,S,*+H,S,®). The importance of this third-
order term in describing the EPR anisotropy for
a Iy quartet has been demonstrated for Co®** in
cubic and tetrahedral coordination® and Re** in
octahedral coordination.® The generalized spin
Hamiltonian for a quasi-T; state in a trigonal lat-
tice can be derived by using the tensor decompo-
sition method and the requirement of symmetry
invariance. With an effective spin S=§, this
generalized spin Hamiltonian, which includes
terms linear in H, has the form

H =D,, T20(§) +&uHpH, T10(§)+ ‘/—é_éh M BHx[Tl -1(§) - Tu(g)] + i BHzTao(g)

+ VIl [Ty 1(S) - T (S)) + b yiH [ Tys(8) = Ty ()] = VEH [T, + T, ,&), (2)

where the parallel direction is along the trigonal [111] axis and T,m(§) are tensor operator equivalents
of rank / expressed in terms of the spin angular momentum S. These operator equivalents are related
to the Stevens operator equivalents and are defined as irreducible tensors which possess the conven-
ient transformation properties.!' The last term in Eq. (2) can give rise to AM=+2 and +3 transitions
when the magnetic field is along a [111]axis. Since only AM=z+1 transitions are observed experimen -
tally, this term will be omitted in the analysis; the omission is fully justified by the very good agree-
ment between theory and experiment as shown below. By diagonalizing the dominant g term, the AM
=x1 EPR transitions within the quasi-I', quartet are given to first order for + 3 —~ — 3 transitions by

hv=gupH —$ V3 upgh{(f1g,/8) cos?0 [5(g /&%) cos?6 — 3] + VI(f.g. /g) sin?6 [5(g ,2/g?) cos?6 11},  (3)
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and for + 3 -+ 3 transitions by

hv=gugH+SV3 uH{f1g1/8) cos?6 [5(g 2 /g?) cos?6 - 3] + VI(f.g./g) sin’6 [5(g % /g?) cos?6 — 1]}

where 6 is the angle between the magnetic field H
and the [111] axis, and g%2=g,2cos?6+g % sin?6.

The experimental anisotropic EPR spectra of
Ti®* in CsAl alum can be described successfully
by using the generalized spin Hamiltonian of Eq.
(2) for a quasi-T, state with trigonal symmetry.
The spin-Hamiltonian parameters were deter-
mined by fitting these angular spectra with Egs.
(3) and (4), and were found to be

2,=1.1937+0.001, g;=0.6673+0.005,

u;=—0.0144+0.002, u,=-0.0868+0.005,

D=39.3+1.0 MHz,

where u, ,=V3f, .. A comparison of the calcu-
lated angular EPR spectra using these spin-Ham-
iltonian parameters and the corresponding ex-
perimental spectra is presented in Fig. 4, where
dots are experimental data and curves are cal-
culated angular spectra. Since the zero-field
splitting parameter D given above is very small,
we estimate using Eq. (1) that y equals approxi-
mately 0.03.’2 Thus the excited I', spin-orbit lev-
el, which has an energy %yh, is approximately 6
cm™! above the ground state. A spin-lattice re-
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FIG. 4. Calculated and experimental angular EPR

spectra of Ti®* in CsAl alum. Dots are experimental
data; solid lines are calculated spectra.
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+ViD[3(g,*/g?) cos®0-1], (4)

| laxation study is underway to confirm the I'; en-
ergy level.

It has been shown that the ground state of Ti®*
as a dilute impurity in CsAl alum is a quasi-TI,
state with a small zero-field splitting. This is
the first demonstration of a quasi-I'; ground state
with trigonal site symmetry. This unique situa-
tion arises because the trigonal splitting to first
order, which is reduced by the vibronic reduc-
tion factor, is comparable with and opposite in
sign to the second-order contribution, which is
not reduced by any vibronic factor. A spin Ham-
iltonian is derived for the quasi-I'y state, and the
agreement between the calculated and experimen-
tal angular spectra is shown to be very good.
With a vibronic reduction factor y of approximate-
ly 0.03, the excited T, state is estimated to be
6 cm ! above the ground state.
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