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In Ref. 1, Keever, Jaduszliwer, and Paul reported

changes in positron intensities for high-yield material

like Ni in periods of a few hours after introducing the
sample into the vacuum system. Similar behavior for
Cu, Ni, Au was observed in our laboratory (Ref. 3)
over a period of several days, perhaps because of
pumping on the sample at 10 Torr. However, no
significant changes in yield have been observed for any
of the low-yield samples reported here over a period
of one week in some cases, even though peak shifts as-
sociated with baking were very noticeable.

See, for example, Etectronic Density of States,
U. S. National Bureau of Standards Special Publication
No. 323, edited by L. H. Bennett (U. S. GPO, Wash-
ington, D. C., 1971), pp. 31, 54, 55, 222.
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An anisotropic direct-transition model for single-crystal semiconductors is shown to
predict the direct-transition features seen in experimental photoemission spectra for
Ge(111) for h v & 20 eV. By comparing theory with experiment, all the conduction and
valence bands at L and &within 1 Ry of the gap are determined. Comparison of experi-
ment with current band models suggests that an 10% self-energy correction may be
needed to describe high-energy optical transitions.

Germanium is a prototype semiconductor for
band-structure studies, and a. variety of experi-
mental techniques have been applied to the deter-
mination of selected aspects of its band struc-
ture. These have included optical measurements"
(which determine energy-band separations), pho-
toemission measurements interpreted using sym-
metry line analyses, '4 and photoemission val-
ence-band overviews' (which give overall band-
widths).

In spite of the large amount of information rep-
resented by the above studies, many significant
features of the valence and conduction bands of
Qe have remained undetermined. In the present
paper, we obtain from photoemission and optical
data all the energy-band eigenvalues for Ge at I.
and at X within —1 Ry of the gap using an analy-
sis which contains two fundamental new results.
There is, first, a demonstration that the anisot-
ropy in photoexcited electron transport to and
escape through a (111)cleaved surface is vital
for obtaining calculated spectra which replicate
experimental spectra for hv ~ 15 eV. Second, ex-

!
perimental band positions are determined by com-

paring data with features in theoretical spectra
which include those which arise from transitions
at general points' in the Brillouin zone (BZ).

Besides our determination of Ge band positions
over a wide range of conduction- and valence-
band energies, there are three other implica-
tions of this work. These are the demonstration
that final-state crystal-momentum information
is preserved in the transport and escape steps of
the photoemission process for cleaved semicon-
ductor surfaces; the observation that direct-
transition features are seen in spectra for all Av( 20-25 eV; and the realization that a "self-en-
ergy" term, e.g. , one linear in energy, appears
to be needed in the Hamiltonian to produce the
proper high-lying conduction-band structure.

Our anisotropic model sta, rts with the energy
bands E„(k)determined by the t = 2 nonlocal pseu-
dopotential described by Phillips and Pandey. '
This potential has been shown' to provide a good
description of valence bandwidths and low-lying
optical transitions in Ge. Photoemission spectra
P(E„hv) for primary (unscattered) electrons,
from states-of initial energy E„arethen calculat-
ed using an anisotropic, direct-transition model:

P(E;, hv) =K Q fd'& j&(E„(k)—E;)~(E. (k) —E, —»)I&„„(k)I')D„(&)T„(k).
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TABLE I. Energy-band positions (in eV) for Ge, vrith Ev= I'25i ——0. Error estimate is in

parenthg se s.

. a~i mIn
—4.5(0.2)

uppeI'
C

12.8(0.6)

+2'v
—10.6(0.5)

X4„b
—3.2(0.2)

Liv'
—7.7(0.2)

Xi
1.3(0.2)

L3'v b

—1.5(0.15)

~ uPPer
C

13.8(0.6)
~V

—12.6(0.3)

L3C
b

4.25 {0.2)

d

1.00

Q2 iC
b

7.8(0.6)

d

3.25

aRef. 5.
b Present analysis.

Present analysis and optical data (Refs.
2, 7).

Optical data (Refs. 2, 7).

l2—
UPPER
Lc

UPPER

C

8 — L2c- =

L3c

cursion below E„,the valence-band edge. At this
point it lies at E; = —3.2 eV and, as shown by our
theoretical analysis, originates from transitions
at X. Thus, the experimental value of —3.2~0.2

eV for X4„is determined, while the final-state
band atX lies at E,, +Iv=13.8+0.6 eV—=X,"pI ',
which is the center of gravity of a set of closely
spaced bands (see Fig. 3). We then determine
X„from X,„and optical data (see Table I).

The eigenvalue ladder at L is next determined
by first utilizing the values I., „=-10.6~ 0.5 eV,
I.,„=—7.7+ 0.3 eV previously determined from
photoemission spectra. ' The peak at E; = —7.7
eV corresponding to emission from states near
I., „

is seen experimentally to increase rapidly in
intensity first bebveen hv =15 and 16 eV, and then
between 20 and 21 eV, establishing I, ,=7.8~0.6
eV and L,"pp" =12.8~0.6 eV. Here L,"pI ' is again
defined as the center of the set of closely spaced
bands at L shown in Fig. 3.

Finally, L,.„andL„aredetermined by com-
paring our calculation with optical data, photo-
emission conduction-band state-density over-
views, "and cesiated-Ge photoemission data"
near hv =5.8 eV. We arrive at" I., „=-1.5+0.15
eV, L„=4.25+0.2 eV. We then obtain L„=0.8
eV from our value for L, , in conjunction with
optical data (see Table I).

The energy-band positions at L and X are listed
in Table I and shown in Fig. 3. (Z, ;„andalso
eigenvalues at I' have been determined previous-
ly from photoemission' and optical data. ") Fig-
ure 3 presents a graphic demonstration of our
overall determination of the total band structure
for Ge. This figure shows that the theoretical
bands near L,'&P" and X,"»' lie -10% too low.
This disagreement cannot be corrected by adjust-
ing the pseudopotential, but only by adding a term
linear in energy to the Hamiltonian, such as that
due to self-energy effects." Finally, we note
that the l= 2 nonlocal term in the pseudopotential
was required to give the proper high-lying con-
duction-band topology, for it is this term that
brings L...close to the experimental position. '

We are grateful to John Freeouf and M. Erbu-
dak who assisted in obtaining the data, and to
J. Shaw for programming assistance.
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FIG. 3. Theoretical energy bands (Ref. 7 potential)
for Ge along k-space symmetry lines. Table I experi-
mental band positions at X, L, and P are indicated by
arrows.
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1t is shown that a simple random-walk formalism is not sufficient to derive ac conduc-
tivities when the influence of the first —waiting-time distribution is considered.

The continuous-time random walk of Montroll
and gneiss' has been employed by Sher and Lax'
and subsequently by Moore~ to derive ac conduc-
tivity in situations where the conduction is pri-
marily by hopping. The treatment ostensibly has
applications to amorphous materials where at
moderate frequencies the conductivity is frequent-
ly proportional to ~', where ~ is the angular fre-
quency and v is a constant of the order of unity.
Sher and Lax are able to fit theoretical curves to
experimental data quite successfully through a
frequency-dependent term of the form

t(dtjJ ((d)[1 —p((d)]

where g(&u) is the Fourier transform of the prob-
ability density of the waiting time between hops
in a random walk.

Firstly I shall derive a. formula for the a,c con-

ductivity in a much simpler fashion than Sher and
Lax and secondly show that expression (1) is in-
correct.

Suppose a potential gradient is suddenly applied
to a material in which the carriers perform a
Montroll-Weiss type of random walk. In this
walk, independent electrons (say) are trapped at
sites which may be distributed at random. Hop-
ping takes place between sites; the transitions
themselves are virtually instantaneous with a
waiting time between hops with probability densi-
ty f(t). The potential gradient naturally causes
the probability of a hop in the forwa, rd direction
to be greater than that in the reverse direction
so that a steady component of current is produced.

Kith the use of a type of argument employed by
Feller, 4 the probability that a transition takes
place in interval dt at time t after application of
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