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R. Dorn and H. Liith

2. Phystkalisches Institut dev Rheinisch-Westfilischen Technischen Hochschule Aachen,
5100 Aachen, Germany
(Received 17 June 1974)

On (110) GaAs surfaces cleaved in ultrahigh vacuum the changes of the ellipsometric
angles &) and 6A induced by oxygen adsorption have been measured for photon energies
1.5<7w <3.5 eV. The main spectral structure is explained as due to the Franz-Keldysh
effect at critical points of the bulk band structure induced by a change of the band bend-
ing. From a comparison with electroreflectance data information can be obtained about
band-bending changes and about surface states.

Recently ellipsometry' has been used, not only
to study adsorption processes on crystal sur-
faces,?3 but also as a tool for investigating elec-
tronic surface states on semiconductor sur-
faces.*® For that purpose an ellipsometric spec-
troscopy is performed in which the changes of
the ellipsometric angles 8y and 0A caused by ad-
sorption of a gas are studied as functions of the
photon energy 7Zw. As a general feature of the
ellipsometric spectra measured on semiconduct-
ing surfaces,*® a remarkable structure is found
not only in the 0A(Zw) curves, but also in oy (Zw).
Since the adsorbed gas layers can be assumed to
be optically nonabsorbing®® in most cases, the in-
terpretation of 6y (%Zw) requires the assumption of
a surface layer on the clean surface with optical
constants different from those of the bulk. Gas
adsorption removes this surface layer; i.e., the
bulk optical constants after adsorption are valid
up to the surface. In previous work this surface
layer was interpreted as completely due to sur-
face states which are compensated by the adsorb-
ing gas. The structure found in &y (%w), then,
is interpreted as due to the joint density of sur-
face states given on the clean surface. Using
this method Meyer and co-workers*® and Morgan®
derived surface-state transition energies for Si,
Ge, and some III-V semiconductor surfaces. In
some cases, however, the structure obtained,
and also the derived surface-state transitions,
is found just at critical points of the bulk elec-
tron band structure. Therefore, the question
arises if also in these cases surface states cause
the structure observed in the ellipsometric spec-
tra. This problem is investigated in detail in the
present publication for cleaved (110) GaAs sur-
faces.

The ellipsometer and the ultrahigh-vacuum
(UHV) system used for the present measure-
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ments have been described previously.? In com-
bination with a series of interference filters,
special quarter-wavelength mica plates were
used as compensators. The measurements were
performed on n-type GaAs (Si-doped with z=2,2
x10" em™3, 11 =3100 cm® V™! sec™!) and p-type
GaAs (Cd-doped with p =0.9x10" em™3, =210
cm? V! sec™!) erystals. With the use of the dou-
ble-wedge technique the samples were cleaved in
UHV (<10 *° Torr) to expose a (110) surface.
Oxygen was used in order to change the surface
conditions.*”

The variations 0¥ and 0A due to the adsorbed
oxygen are plotted versus photon energy in Fig. 1
for n- and p-type samples. As has been shown
previously, at these dosages the adsorption pro-
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FIG. 1. Changes of the ellipsometric angles 6A and
& due to oxygen adsorption at 300 K. The dash-dotted
curves describe a calculated contribution which re-
mains after subtraction of the changes induced by the
Franz-Keldysh effect.
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cess has saturated with a total oxygen coverage
of about half a monolayer.® oA and &) exhibit a
prominent structure between 2.5 and 3.5 eV
which is similar for both #»- and p-type material
concerning sign and absolute amount. The struc-
ture of all spectra measured was the same,
whereas the absolute height varied over a range
which is shown by the two examples plotted.

Two important results must be considered con-
cerning the analysis of the ellipsometric data
(Fig. 1). (a) The change &y is positive all over
the spectral range investigated. (b) The main
structure of the curves of 6y and 6A versus pho-
ton energy is found just at critical points of the
bulk electron band structure.

Result (a) can be explained only by the assump-
tion that the optical absorption within a layer
near the surface decreases during the adsorption
process.? In previous publications this layer was
completely attributed to surface states which are
removed by the adsorbing gas.

Result (b) bears a great similarity to the well-
known electroreflectance spectrum® of GaAs
[Fig. 2(a)] in which a relative change of the re-
flectivity AR/R induced by an external electric
field is measured as a function of photon energy.
A modulated external electric field applied nor-
mal to the surface modulates the electric field
within the space-charge region (100-1000 A be-
low the surface) giving rise to a change of the re-
flectivity mainly near critical points of the bulk
band structure® (Franz-Keldysh®!° effect). Sera-
phin'! has already emphasized the importance of
electroreflectance measurements for surface
studies on semiconductors. The structure in the
electroreflectance spectrum on GaAs [Fig. 2(a)]
is caused by two critical points at 2.9 and 3.15
ev.?

In the present experiments the band bending of
the clean surface is expected to be changed as a
result of a charge redistribution at the surface
during oxygen adsorption. This might cause a
change of the optical constants due to the Franz-
Keldysh effect. Hoffmann has already observed a
change of the reflectivity of ZnO surfaces near
band-gap energy during gas adsorption,'?!?

From 0y and 0A obtained in the present experi-
ments by oxygen adsorption, reflectivity changes
AR/R for normal incidence are calculated. AR/
K versus photon energy is compared with the
electroreflectance spectrum measured by Car-
dona, Shaklee, and Pollack® in Fig. 2. The main
structure found in the electroreflectance spec-
trum [Fig. 2(a)] is also obtained in the AR/K
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FIG. 2. (a) Electroreflectance spectrum on n-type
GaAs after Cardona, Shaklee, and Pollack (Ref. 8).
The sign of AR/R is that observed when the negative
cycle of the modulating voltage (1 V, rms) is applied to
the sample. (b) Relative change of the reflectivity
AR/R due to oxygen adsorption as derived from the
ellipsometric data: curve 1, calculated from the mea-
sured values 6A and &; curve 2, corrected by the con-
tribution due to the adsorbed oxygen layer; curve 3,
after subtraction of surface-state layer and oxygen
contributions.

curves as calculated from the ellipsometric data
[Fig. 2(b), curve 1], Only a monotonic contribu-
tion is superimposed.

Good agreement of the ellipsometric with the
electroreflectance data is obtained if the whole el-
lipsometric effect is explained by three contribu-
tions: (i) an adsorbed oxygen layer, (ii) a change
of the optical constants within the space-charge
region due to the Franz-Keldysh effect, and
(iii) a change of the optical constants during oxy-
gen adsorption within a very thin surface layer.

Dosages used in the present experiments have
been shown previously to produce an oxygen cov-
erage of about half a monolayer.® In a macro-
scopic description this layer [contribution (i)] is
assumed to have an effective thickness of 1 A and
a refractive index of n, = 1.5.>% Contribution (i)
does not have much influence on the ellipsomet-
ric changes [curves 1 and 2 in Fig. 2(b)].

In order to get best agreement with the electro-
reflectance data, the difference between the mea-
sured and the dash-dotted curves in Fig, 1 is in-
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FIG. 3. Imaginary part of the dielectric constant
for bulk GaAs, Ime,, after Philipp and Ehrenreich (Ref.
15), and additional contribution Im(e,~ €,) of the sur-
face-state layer (thickness 5 A).

terpreted as due to the Franz-Keldysh effect.
Curve 3 in Fig. 2, then, shows the corresponding
reflectivity change induced by the Franz-Keldysh
effect [ contribution (ii)].

Contribution (iii) might be explained, as in pre-
vious work,?™® in terms of electronic surface
states on the clean surface which are compensat-
ed by oxygen adsorption. If the thickness of the
surface layer is assumed to be 5 A (reasonable
for the penetration depth of surface states), the
optical constants n«, and Ree,,Ime,, respective-
ly, of this layer can be calculated.® Figure 3
shows the imaginary part of the bulk dielectric
constant, Ime,, as compared with the additional
contribution of the surface states Im(e; - €,).
This comparison indicates that nearly the same
transition energies are found between surface-
state bands as between bulk electronic bands.
Theoretical calculations by Levine'® also suggest
a surface-state band structure for III-V com-
pounds which is similar to that of the bulk. The
slight shoulder of Im(e, - €, ) (Fig. 3) might be
explained by an additional critical point of the
surface band structure near 2.6 eV.

Another explanation for the similarity between
surface-layer and bulk absorption would be that
in the spectral range considered the probabili-
ties of bulk electronic transitions very near the
surface are decreased because of oxygen adsorp-
tion.
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The interpretation of contribution (ii) in terms
of the Franz-Keldysh effect allows some conclu-
sions concerning the band-bending change in-
duced by oxygen adsorption. In the electroreflec-
tance measurements made by Cardona, Shaklee,
and Pollack® [ Fig. 2(a)|, mean electric fields
within the space-charge layer of the order of 10°
V em™! are applied. Since the absolute height of
the present AR/R structure [ Fig. 2(b)] is on the
order of that of the electroreflectance curves,
oxygen is expected to change the space-charge
field by a similar amount. As in Gregory et al.,’”
the Fermi level at the surface is pinned within
+0.1 eV for n-type crystals on oxygen adsorption,
A band bending of 0.1 eV corresponds to a depth
of the space-charge layer of about 400 A 5 ie.,
the possible maximum band-bending change of
0.2 eV due to oxygen gives a change of the space-
charge field between 10*and 10° V em™!, in agree-
ment with the estimate derived from the electro-
reflectance data. This also confirms the inter-
pretation in terms of the Franz-Keldysh effect,

Reflectivity changes induced by the Franz-Kel-
dysh effect depend on the square of the electric
field and not on its sign.>'® On clean (100) GaAs
surfaces of n-type material the space-charge
field is directed towards the surface of the crys-
tal (depletion layer).’® The same field direction
is given for the electroreflectance spectrum
[Fig. 2(a)] on n-type samples.® If in those experi-
ments the space-charge field is decreased, the
electroreflectance changes exhibit the same sign
as the AR/R curves of the present experiments.
Therefore, on clean, cleaved (110) surfaces of
n~-type samples oxygen must decrease the upward
band bending. Because of the uncertainty about
the exact amount of the band bending on p-type
samples (nearly flat band for p ~ 10" cm™3'8) the
sign of the band-bending change due to oxygen
adsorption cannot be derived unequivocally.

The present work shows that electronic sur-
face states can be investigated by ellipsometric
spectroscopy but that care must be taken in at-
tributing the spectral structure completely to
surface states. This seems justified only if no
bulk critical points are found in the considered
spectral region,
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In ellipsometry the change of polarization of light
upon reflection is measured in terms of the two angles
A and ¢ defined by 7, /7, =tam exp(iA), v, and » being
the reflection coefficients for light polarized parallel
and perpendicular to the plane of incidence, respective-
ly.
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Electroreflectance spectra in PbTe lead to a clear determination of the band separa-
tions at L. Our results suggest that the accepted parity labeling of some of these states

may be incorrect.

We have made low-temperature electroreflec-
tance (ER) measurements on PbTe which quanti-
tatively establish the band separations at the L
point and raise the question of the parity assign-
ments at L. Earlier measurements by Aspnes
and Cardona!'? and Seraphin® indicated the impor-
tance of band-population effects in PbTe and oth-
er IV-VI materials. We have exploited these ef-
fects.

The basis of our study is the knowledge that the
fundamental gap is at L and that by changing the
band filling at L with the subsequent shift of the
Fermi level, the transitions associated with the
Fermi level may be spectrally shifted. This has
been applied to the study of InSb* and PbSe ® and
the basic ideas are discussed in those papers.
We now apply this to PbTe.

We have investigated a number of n- and p-type
bulk crystals at 10°K over the spectral range 0.3
to 6 eV. The metal-insulator-semiconductor
sample preparation and apparatus are essential-
ly the same as that described elsewhere.*”®

The results are presented from 0.9 to 2 eV
over which we observed the effect of varying the

band population. We start with a p sample bias-
ing it so as to move the bands from accumulation
toward the flat-band position. The polarity of the
nonshifting 1.20-eV AR/R structure is used as
the reference for the sign of the surface poten-
tial*->*7:8 as checked by surface-capacitance mea-
surements. The polarity is negative in our p
samples over the available bias range, indicating
an accumulation layer. In n material the bands
can be moved through the flat-band position as
judged again by the polarity of the 1.2-eV struc-
ture which now inverts with positive bias. This
judgement is complicated by the multiplicity of
structure around this energy.

In Fig. 1 we show the ER spectrum for a p sam-
ple of carrier concentration (3-5) x10*® ¢cm ™3,
Note the strong negative peak at 1.20 eV. The
negative peaks at 1.5 and 2 eV show a marked
red shift with increasing positive bias as indicat-
ed by sample p-1, at biases —3 and +3 V. There
was a shift of 17 meV for the former peak and 27
meV for the latter. Over the bias range — 6 to +6
V these shifts were 40 and 60 meV, respectively.
The bottom spectrum in Fig. 1 is for the same
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