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The general first-order parametric-instability equations for an inhomogeneous finite-
size plasma are solved both analytically and numerically. It is shown that the wave-num-
ber mismatch introduced by plasma gradients does not necessarily convert absolute in-
stability into convective instability, even for large systems. Absolute instability can also
occur when the length of the system is determined by a smooth spatial dependence of the
growth rate.

Recently, there has been considerable interest
in the properties of parametric instabilities in
inhomogeneous media' ' because of their impor-
tance in the anomalous absorption' or scattering'
of laser light in the low-density corona of a la-
ser-irradiated DT pellet. ' Using an unbounded
but inhomogeneous plasma model, Rosenbluth'
and Piliya have shown that in the presence of a
plasma gradient, an absolute parametric insta-
bility is converted into a convective instability.
Pesme, Laval, and Pellat' have stated that this
only occurs if the size of the plasma is greater
than some critical length yo/v'(v, v, )'t'. Below
this critical length but above the basic gain length
(v,v, )' '/yo, absolute instability was sai.d to occur.
We show here instead that, provided y, '/n'v, v, & 1
and the damping rates on the waves are small,
absolute instability occurs for any size plasma
greater than the basic gain length. Thus we con-
clude that the assumptions of Refs. 2 and 3 are
unrealistic and that the results of Ref. 4 for a
sharply bounded plasma are incorrect.

We begin, as usual, with the general three-
wave inhomogeneous parametric-instability equa-
tions':

(p+y, )a, +v, sa, /sx =y,a, *exp(i J zdx), (1)

(p+y, )a, * —v, ea/Bx= ay, oexp( —i jKdx), (2)

where a, and a, are the complex amplitudes of
the two coupled waves, y, and y, are the respec-
tive damping rates, and vy and v, are the respec-
tive components of the group velocity along the
density gradient and are assumed to be in oppo-
site directions. The two waves are coupled by
the pump wave to give an infinite homogeneous
growth rate yo. The pa. rameter I& =ko(x) —k, (x)
—k, (x) is the spatial mismatch in wave number

due to plasma gradients. We consider the case
of a linearly varying x with w =0 at the center of
a plasma of length L. We also assume the be-
havior in time of exp(Pt) so that we may elimi-
nate the time derivatives in Eqs. (1) and (2). The
growth rate y, is assumed to be zero for x & —L/
2 and x &L/2 and the equations are solved with
the boundary conditions of fixed incoming waves,
i.e. , a, (-L/2)=a and a, (L/2)=b. The value of P
is adjusted so that these boundary conditions may
be satisfied for other than trivial solutions. If
solutions are found for Rep & 0, then there is ab-
solute instability.

An infinite, inhomogeneous plasma with a lin-
ear mismatch v(x) = v'x is certainly not physical-
ly meaningful as Ixl- ~. In Refs. 2 and 3 bound-
ary conditions at Ix I = ~ were imposed leading to
the singular result that the absolute instability
which exists in an homogeneous system (v' = 0)
becomes a convective instability for an arbitrar-
ily small but nonzero x'. As we will show, the
imposition of boundary conditions at finite points
in the plasma preserves the absolute instability
whose growth rate is then a continuous function
of K

The effective length of the system, insofar as
the parametric instabilities in laser-produced
plasmas are concerned, is determined by the x
dependence of the parameters in Eqs. (1) and (2).
In this paper we will assume that the growth rate
y, =y, (x) controls the scale of the problem. In the
case of Brillouin backscatter, the homogeneous-
plasma growth rate' is yoo-n, 'k„where n, is the
electron density and k, is the pump wave number.
In the WEB approximation of Eqs. (1) and (2),
these parameters are replaced by their local val-
ues as functions of x. Thus y, (x) approaches zero
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FIG. 1. Normal-mode growth rates as a function of
l for A.i~a=7.5. For reference two curves of growth
rate as a function of A, are shown. The upper curve is
indistinguishable from the numerical curve over most
of the parameter range. The shaded region contains
many roots which are not shown for clarity.

at the zero-density front of the plasma and at the
reflection point [vo = e~, (x)] where ko = 0. Similar
considerations apply to the yo for Raman back-
scatter' where y, vanishes at +0=2m~, (x) and at
the zero-density front.

We first consider the case in which y, (x) is a
step function,

FIG. 2. Normal-mode growth rates as a function of
i for fixed ~ = 2. The shaded region has many roots
which are not shown.

with boundary conditions (=a at y = —l/2 and

[2(lu+ iy)+ 8/&y]t/i = b at y = l/2, where a and 5 are
arbitrary constants and where we have defined
the following dimensionless variables:

A. = y, '/v'v, v„ l = MK'L.

In the WKB approximation this leads to the dis-
persion relation

yo, —L/2 &x & L, /2,x
0, otherwise,

[p+ i —,'l+ 2v„(—,l)]tan[v, . (2l) —v;(——,'l)]
= —2 v, '(-,'I), (6)

and apply boundary conditions at x = + L/2. For
a homogeneous plasma this reduces to the prob-
lem considered by Kroll' and others. In Figs. 1

and 2 results are presented for an inhomogeneous
.plasma as obtained by a combination of numeri-
cal and analytic techniques described below.

Numerical solutions to Eqs. (1) and (2) are ob-
tained by setting a, (—L/2) = 0 and a, (—L/2) = const,
integrating the equations to x =L/2, and adjusting
the complex value of P so that the complex value
of a, (L/2) is equal to zero.

A semianalytic analysis of these equations us-
ing the WKB approximation was also used, The
substitution

where the WEB solutions of Eq. (4) are g, (y)
= exp[v„(y)+ iv, (y)] with'

v„(y) = ——,
' Inq+. . . ,

(7)
v;(y) = f;dy"'~(y')+

The roots of the dispersion relation of Eq. (6)
were found on a computer up to sixth order in the
WKB approximation, allowing us to examine the
convergence of the procedure directly.

The usual WKB validity condition q' «q' can be
cast in the form

I
~z(y —»p~"')I «21 -'(y 2ip~"')'+ &+—l il"',

l 1 P+y, P+y, iV'x' l

2 v v 4

reduces Eqs. (1) and (2) to the form

, +q'(y, p, , X)P = 0,

g' = 4 (y —ip)'+ A + 2 i,
(4)

where Io = Iu/2A.
"' is the growth rate in units of the

homogeneous-plasma absolute growth rate. ' If
A»1 and y has its largest value lK'L/2, it is
easy to see that the inequality is automatically
satisfied if zv'L 2/»A. 'i'. lf y «A. 'i', on the other
hand, the inequality reduces to p «2X(1 —p')'i'.
If we equate both sides of this inequality, we ob-
tain the growth rate at the point of failure of the
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WKB solution. For A. »1 this condition yields p
=1 —(2A. )

'I'. In Fig. 1 the curve p= 1 —X "' is
shown to be very close to the points of coales-
cence of the roots. We also see that the point of
breakdown of the WKB solution defined by

describes the maximum growth rate of the abso-
lute instability very accurately. This formula
predicts that p is independent of L if A. »1 which
agrees with Fig. 2 for large L.

Below the coalescence points Imp is very near-
ly zero. Above the coalescence points the numer-
ical solution shows that the two roots have the
same ReP but oppositely signed ImP, i.e. , are
complex conjugates. I ImP I increases approxi-
mately as l/A. ~~', is nearly independent of a', and
increases linearly with L. Thus the most favor-
ably matched point moves away from the center
of the region where ~=0. This point, however,
always remains far from the boundary of the plas-
ma so that the solutions are not inconsistent with
the original WKB approximation.

In Fig. 1 we can trace the absolute-instability
growth rate for various modes from their rc'=0
(A. -~) values continuously as functions of l (or
equivalently K' since A''I =7.5) to bey. ond the
points where the various roots pairwise coalesce.
In addition, new unstable modes appear which
are not unstable for rc' = 0. These also eventually
coalesce with other roots as K' increases. These
new modes arise from the intersection of roots
which are stable for small ~' and which have
large Imp of equal magnitude and opposite sign.
Beyond the point of intersection, the va.lues of
Rep take on opposite signs (sta, ble a.nd unstable)
and ImP is very small. Apparently the distortion
of the wave function by the mismatch permits ad-
ditional unstable modes to satisfy the boundary
conditions.

In summary, we have found that for a step-func-
tion y„ the a,bsolute-instability growth rate goes
to zero only for X&1, and for X =const &1, ReP
—const as L —~. Therefore, the absolute insta-
bility exists for A. &1 and arbitrary plasma length.
The step-function model is, of course, unrealis-
tic in detail but has the virtue of showing that the
boundary conditions imposed far from the match-
ing point have an important effect on the nature
of the instability.

To determine to what extent the absolute char-
acter of the instability is caused by the discon-
tinuous nature of yo considered above, various
smoothly varying y, (x) were investigated numer-

X V~V~

V~+ V2
(9)

ically. Two cases were considered in which the
gradients in y, were made independent of the
length of the system:

j. I
~

0, x& —2L, x& L,
y, (x) =, y, (x + 2L)/L x + 2L ~L„

i y„x+ ,L&—L„.

and y, (x) =y, tanh[(x+ L/4)/L, ), where L, is the
size of the region of large gradients in y, . We
find that for both cases, if L, «L, [even for L,
& (v,v, )"'/y, ], the results are essentially un-
changed from those of Figs. 1 and 2. That is,
the absolute instability discussed above is not a
result of the discontinuous change in y, . As long
as the effective matching point implied by the
large I ImP I is not in a region of strong gradients
in yo, limp l is unchanged. As L, is increased
toward I-, however, the effective matching point
is pushed toward the center. If L is greater than
the length for coalescence, the absolute instabil-
ity goes away when the matching point reaches
the center. This behavior is consistent with that
found for the function yo(x) =y, sin'[v(x+ 2L)/L].
In this case the sequence of unstable roots in the
homogeneous plasma is distorted downward by
the increasing inhomogeneity (or decreasing A. )
rather than upward as in Fig. 1. They generally
coalesce near p =0 just before the absolute insta-
bility is completely suppressed. This is consis-
tent with the behavior described above for the
profiles with more uniform y, (x). Large gradi-
ents in y, appear to suppress the movement out-
ward from the center of the matching points.

We have also found that if K' is chosen to be a
function of x such that A. is a constant in space,
absolute instability can occur even for y, (x)
~ sin'[m(x+ ~L)/L]. This does not correspond to
the case v = ~(0)x' considered by Liu, Rosenbluth,
and White" since the coupling is zero in the re-
gion where v' =0. All this goes to show that one
cannot make general conclusions about the exist-
ence or nonexistence of absolute instability. One
must consider all the inhomogeneous aspects of
each problem.

The presence of damping (linear or nonlinear)
can, of course, keep the system below the ab-
solute-instability threshold From E. q. (8) the
explicit formula. for the growth rate of the strong-
est growing mode is
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which is the same as the fastest growth rate for
the homogeneous bounded system except for the
factor 1 —1/v v A,

'~'. When damping is strong
enough to make ReP &0, the finite size of the plas-
ma may also play a role in the properties of the
convective evolution of the instability as previ-
ously noted by several authors. ~"
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The effect of the ponderomotive force in the interaction of a capacitor rf field with a
nonuniform plasma is investigated.

The interaction of intense radiation with non-
uniform plasmas is presently a subject of great
fundamental and practical interest, Recent ex-
periments' have indicated that one of the most
significant effects in this problem is the nonlin-
ear modification of the density profile by the
large electrostatic fields that arise due to linear
mode conversion. In this Letter we present a
simple time-dependent model which permits the
isolation of the fundamental aspects associated
with the density changes caused by the pondero-
motive force.

We consider a plasma whose zeroth-order spa-
tia, lly dependent density is given by n(x) =no(1
+x/L), in which I, is the profile length scale and
n, is the density at the spatial point x = 0. This
plasma is assumed to be driven by external ca-
pacitor plates that generate a vacuum rf field
given by E, exp( —ir ', t) This highly sim. plified
geometry has been used successfully' to make
delicate measurements of the enhanced electric

field in the plasma and the associated nonlinear-
ities. The capacitor pump field generates a self-
consistent electric field in the plasma which can
be represented by E(x, t) exp( —i&a, t). &n the pres-
ent work we assume that the time dependence of
E(x, t) is slow compared to the 2m/eo time scale.
Since we have in mind effects that occur in the
neighborhood of the resonance point where e,
matches &u~ (the local electron plasma frequency),
the effect of wave-particle interactions is neglect-
ed. This assumption is strictly correct for small
pump amplitudes; at large amplitudes the spatial-
ly localized electric fields generated may inter-
act strongly' with the particles. However, since
we are interested in the initial stages of forma-
tion of these electric field spikes, the secondary
effect of their interaction with the particles is
neglected. The basic equation that describes the
slow time behavior of this system can be obtained
by combining the high-frequency response of the
electron fluid together with Poisson's equation.


