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Theory for the Slowing Down of the Relaxation and Spinodal Decomposition
of Binary Mixtures

K. Binder*f
Bell Labovatovies, Muvvay Hill, New Jevsey 07974

and

D. Staufferft
Physik Depavtment T30, 8046 Gavching, West Germany
(Received 15 August 1974)

The weak nonexponential relaxation «<¢ -a’ recently found in computer experiments on
the phase separation of alloys is explained in terms of a cluster reaction and diffusion
process. The nonlinear features of this process can be accounted for by a time-depen-
dent diffusion constant. Estimates for the resulting exponents [a’ =1/(3 +d)] are consis-
tent with the computer simulations. The experimental observability of this slowing down

is discussed.

Phase separation occurs if A-B mixtures are
suddenly quenched to a sufficiently low tempera-
ture while being kept at constant concentration.
The kinetics of this unmixing process has been
investigated recently by computer experiments
on simple model systems, ' " as well as theoreti-
cally®® and experimentally.”® Most striking are
the slow asymptotic ¢7%', ¢%' decays of both the
structure function Sa;(K, #) and the energy E(?),
where!™ a’, b’= L-%. Previous theories (a
“Ginzburg-Landau” approach,®® or a linearized
diffusion theory®) predicted a’= 3 in three dimen-
sions. In both approaches this prediction a’= 3
can be generalized' to arbitrary (nonintegral)
dimensionality d >2. “Conventional” theories®® 1!
lead to even more rapid (i.e., exponential) decay.

In this paper we outline a phenomenological the-
ory in terms of the diffusion and reactions of
clusters, generalizing previous studies of single-—
spin-flip kinetic Ising models, where only clus-
ter reactions are important.!* This model de-
scribes satisfactorily both the equilibrium and
metastable states of a binary mixture.'®'* First
we obtain the critical relaxation of our diffusion
constant in agreement with the established re-
sults.’® Then we discuss the nonlinear case and
estimate the exponents a’ and b’. We show that
several regimes with different behavior can be
distinguished.

We denote a typical fluctuation of the local
(coarse-grained) concentration c(x) as a cluster
of size I, if it contains / more B atoms than would
correspond to the surrounding concentration.

Two regimes of cluster behavior must be distin-
guished.’® First, at very low temperatures, the
clusters contain nearly pure B phase. Hence we
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find for the cluster volume, surface, and diffu-
sivity (I >1)

V=1, §,=81""Ve

~ . (1)
D,=DS,(c,/1)?=D1"1"V4,

The constants in Eq. (1) may be adjusted to ac-
count for nonspherical cluster shapes.® In de-
riving D, we used the fact that'® most atoms
“evaporating” from a cluster because of stochas-
tic exchanges reimpinge at the same cluster
again. By such a process the “center of gravity”
of a cluster, x,=2,x,/l (it is summed over the
coordinates §,- of all the atoms of the cluster), is
randomly shifted by an amount c,/I (henceforth
the ¢, are constants or order unity). Since the
number of A-B exchanges per unit time is (at
least roughly) proportional to the cluster surface,
Eq. (1) results.

The second regime occurs for T near T, and
above, where the concentration difference be-
tween a typical fluctuation and its environment is
rather small, and hence we have'®

Vl — ‘?ll+1/6

~ N (2)
D,=D'V (c,/D?=D"1"1"3,

The exponent 0 enters by the requirement that the
average cluster volume be ¢ [« (1 - 7/7T ) P VS
¢ being the correlation length.!® Now atoms ex-
changing their sites in the interior of the cluster
may also shift the “center of gravity” of the clus-
ter.

The dynamics of the system is described by a
master equation, stochastic exchanges of atoms
occurring according to thermal equilibrium with
a “heat bath.”'” Let n,(x, ) be the local time-
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dependent cluster concentration and let g,(;{, £
=[n,(x, 1) —n,)/n,, where n, is the equilibrium con-
centration. If we disregard the details of the ki-
netics due to the various local geometric arrange-
ments of the atoms, we find that the equation may
be approximated by an equation describing the re-
actions and the diffusion of clusters.’®!® For
generality, we do not use any explicit formula

for n,; (such as the Fisher cluster model®™). But
scaling implies that the dominant contributions

to the relaxation near thermal equilibrium come
from the diffusive term 8g,(X, £)/9¢= D,V2g,(X, f)

in the vicinity of the “dominating” cluster size

l £ 10 !

lyx<|1-T/T, V88, (3)

corresponding to clusters of volume £% It turns
out that for I« and I>1,, cluster reactions
dominate, while for [ ®1, and {- « cluster diffu-
sion dominates, for wave vector K—0. Then
S(k, #) is reasonably approximated by

S, ) = [dx %" ¥[(c(0, 0)c(X, ) - (¢)?]
~ S(k) exp(~c,D, gkzz,‘). (4)

Equations (2)—(4) show that D, 1-7/T,7, in
agreement with the renormalization-group re-
sults.’® Thus our description is consistent with
critical dynamics in linear response.

We now assume that the relaxation function has
in the general (nonlinear) case essentially the
same structure for kK -0 as in Eq. (4), but in-
stead of D;, we must insert the diffusion constant
D,, which corresponds to the typical cluster size
k, ! (instead of £) of the actual situation.

In the unmixing (computer) experiments the sys-
tem is cooled from T,> T, [where $ (K, 0) =0]
to T<T, where Sapk,« =c,/(k?+k?) [for
< £"Y(T)] describes regions of two phases coexist-
ing in equilibrium® (k™! is the domain size).

After a complicated initial stage one observes
ordered regions of typical size &2, "'(#), which
steadily grow to infinite size #,(f) <¢*'. Hence
we approximate S (K, #) asymptotically by

Sar(K, #) ml—e—z—fz(—tl(—t) {1 - expl- c.D,(HE?¢t]},

ksk,(t) <& NT). (5)

The constants c4(t) and ¢, depend on the mean con-
centration of B atoms in the system; in contrast
to Ref. 9 our treatment is not restricted to the
dilute limit. S,.(K, /) has its maximum at a wave
vector <k, (#) [see, e.g., Fig. 3 of Ref. 1], and

thus
kDD, (D =cy/t. (6)

For T<T, Eq. (1) applies for the relation between
D,,(#) and the domain volume V,(f) <[k, ()] % thus

Dm(t) o« [Vm(t)]-l-lldoC [km(t) ]d+1,
and
kB ()<t a'=1/(3+d), T-0. (7

From the sum rule Y, 7S z(K, £) =1 we then de-
rive®® ¢ (¢) <[k, () ]?"% Our main result, Eq. (7),
can be interpreted more simply directly from Eq.
(1), by noting that a change AV, =V, (#) of the
cluster volume occurs within the time Af needed
for the cluster to “travel” the mean distance be-
tween neighboring clusters, which is of the same
order as k,(f). From k, 2« D_Atand dV,/dt
=AV, /At V, R, 2/A,, we get V, oci¥(3+0) § o
Eq. (7).

For T=T_Eq. (2) applies and hence {D,(?)

o Vm(t) =(1-1/8)/(1+1/8) o [km(t)]d(é =1)/(6+1) _ [km(t) ]2- 11}’

B (Dot ™% a,=1/(4-m), E, (HE>1. (8)

For not too large times Eq. (8) may hold for 7T
SsT.and even T2 T, Fork, (f) <& (T>T,) we
need D,g rather than D,(#) in Eq. (6) and hence

B (ot a=3, k(DE<1. (9)

For T<T,and k, () — < the excess energy E({)
is basically the total surface (“domain-wall”) en-
ergy of the N ,(#) regions of size k2, }(#), and thus
E(t) <N, (D[k,()]7 4"V, Conservation of the total
concentration gives N, (#)V,(¢) <N (D[k,(£)]¢
=const, and hence

E(D) <k, (Hxt™® b'=a’ (10)

For T>T,and &k, (1) > £, the excess energy E(f)
of a structure of size 2, "(¢) is basically a vol-
ume energy, since a high degree of correlation
exists only over distances £ Asymptotically this
energy should be proportional to the square of
the order-parameter fluctuation c,(#) in this re-
tion,™ ¢, () <[V, (H1"V2, E(#) =N () V,(Dc, 2D,
and we find

E(®) [k ()t b=da=d/2. (11)

The relaxation of the energy at T, can be obtained
similarly.'® The rather crudely derived Eq. (11)
follows also from a different estimate. When the
excess energy E(#) becomes small, its decay
should correspond to the decay of the energy-en-
ergy correlation function of an equilibrium state,
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and hence®»?2!

<'}C(0)3C(t)>corr o« fd (C(O O)C(p, O)C(X t)c(x +p, t)>c0rr

= fd'“‘x (C(O, O)C(X, t» corr

= [ak s2(k, o).

Since S(k - 0) - const for T>T,, the exp(— Dk2))
decay gives b=d/2 [combining Egs. (5) and (12)].
Note that also Egs. (8) and (9) can be obtained
from scaling assumptions without the use of any
cluster picture.™

References 1 and 2 gave a’=b’'~
and d=2, in agreement with Egs. (7) and (10).

Far shorter computing times make the a’=% of
Ref. 3 less accurate. At T'=1.1T7_and d=2, only
b~ & has been given,® which can be interpreted

in terms of changeover from the critical behavior
to b=1[Eq. (11)].

In conclusion, the estimated exponents are in
satisfactory agreement with observation. Our
basic physical assumption is that for a range of
times the relaxation proceeds by the diffusion
and coalescence of large “clusters.” The diffu-
sivity depends on cluster size, and hence on time,
and therefore size and time are related by the
self-consistency condition Eq. (6). Our assump-
tion implies that more rapid processes are not
dominant, at least not within a broad range of
times. These other processes include the growth
of the clusters by incorporation of small clusters
or single atoms in their environment, or the dif-
fusion of single atoms one after the other from
one stationary cluster to the other. In order to
simulate this latter process, the continuum ap-
proximation of Ref. 9 took the driving force for
this diffusion to be proportional to the mean su-
persaturation of the solution. In our short-range
interaction model, however, the atomic exchanges
depend on local conditions only, and not on aver-
ages over the whole system. This fact may ex-
plain why the treatments®® yield a decay which
is too rapid.

Several measurements exist for glasses and
metallic alloys.?*23 However, usually the later
stages of the separation process are very much
affected by dislocations or other imperfections,
or by elastic strain fields, preventing further
growth of 2, "'(#). The latter effect is unimpor-
tant, however, for k&, '(¢) <(T,/0 p(1/4)%, O be-
ing the Debye temperature of the B phase, and A
the relative difference in lattice spacing of the
A- and B-rich phases.® Also small concentra-
tion gradients, etc., affect the decomposition on-
ly in its latest stages.? If A-B exchanges are pos-
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1 for T=0.58T,

2= [a% [d% [a%’ exp0 K" XI5 )S(E, 9

(12)

|

78, 421 (1973);

sible via vacancies only, which are accumulated
near the grain boundaries (i.e., the cluster sur-
faces), one rather observes a’—b’ 1/(d +2),
however.©

Such problems do not occur in liquid mixtures.
So far only one study of the early stages of phase
separation in liquids is available” and hence a
study of larger times and of other systems is
suggested. However, in a liquid the dominant
contribution to the cluster diffusion for d=3 is
D,«1/n,V,"%instead of Egs. (1) and (2), accord-
ing to Stokes’s law [this term is missing in our
case, the viscosity of a solid being 7,==], and
in analogy to Eqgs. (6)—(8) we then get a decay
«¢™¥3, Thus we predict the asymptotic decay of
the decomposition in solid and liquid mixtures to
be rather different, as is the case for the criti-
cal relaxation. ! 24
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I report measurements of the longitudinal resonance in the B phase of superfluid He?
at melting pressures over a broad temperature interval, I also present the results of a
transverse NMR study in the B phase which is designed to test the theory of textures in
the B phase and to provide accurate measurements of the B~phase susceptibility., Final-
ly, I report the first measurements of a field-dependent frequency shift in the transverse

B-phase NMR associated with the anisotropy energy of the rotation axis of the Balian-

Werthamer state.

In the context of the spin-fluctuation theory of
Brinkman, Serene, and Anderson’? the B phase
of superfluid He® must be identified as the Balian-
Werthamer (BW) or “isotropic” state® described
by Leggett* in which the spin and orbit coordi-
nates are rotated by cos™*(~g) about an arbitrary
axis . Yet to date most experimental results
have not been interpreted as supporting this iden-
tification.>® Only the work of Osheroff and Brink-
man” (OB) seems to clearly support the Brinkman-
Serene-Anderson result. As a consequence of the
OB interpretation of their data as evidence for
domain structure or a “texture’® in the B phase,
Brinkman, Smith, Osheroff, and Blount® (BSOB)
have developed a Ginzburg-Landau theory to de-
termine the effects of surfaces and magnetic
fields on the spatial orientation of the axis @i and
the effects of this spatial orientation upon the
transverse NMR spectrum.

In this work I present measurements of longi-
tudinal resonance in the B phase at melting pres-
sures. I also present results of a careful trans-
verse-resonance study in the B phase designed to

test the BSOB theory. I finally use the BSOB the-
ory to derive the reduced B-phase susceptibility
x(B)/x(F.L.) from present NMR absorption mea-

urements and use these values to compare the
longitudinal resonant frequencies in the B phase
with those measured by OB in the A phase.

The compressional apparatus used in this work
has been described by Osheroff and Anderson®
(OA) and by OB as have the NMR and thermome-
try techniques. This work utilized the NMR tail
piece used by OA, which included a longitudinal
resonance coil not mentioned by OA., This coil
had a smaller diameter than the equivalent coil
of OB which improved the He? filling factor for
the new coil by about a factor of 4. ‘

Longitudinal resonance in the B phase was ob-
served in a manner similar to the measurements
made in the A phase by sweeping the cell pres-
sure (temperature) and plotting the rf level across
the tank circuit as a function of both time and
pressure. The temperature of the resonance at
a given frequency was obtained by averaging the
apparent resonant temperature on equal numbers
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