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We calculate the effects of Iong-wavelength fluctuations on the electrical conductivity
and lattice stability of a quasi-one-dimensional metal. Attractive interactions stabilize
the lattice and cause a conductivity divergence at zero temperature. These results are
exact and can be related to problems in two-dimensional relativistic quantum field theory.

The recent discovery of crystals exhibiting one-
dimensional metallic anisotropy, "has led to re-
newed interest in the theory and potentialities of
such systems. ' ' The electrical conductivity is
of particular interest because of early reports of
a giant conductivity' in some samples of tetrathio-
fulvalinium-tetracyanoqu inod imethane (TTF-
TCNQ). Although attempts to calculate the con-
ductivity for one-dimensional systems have been
reported, there are many issues still unresolved.

Neutron-scatter ing measurements in quasi-one-
dimensional magnets, for example (CD, ),NMnC1,
(TMMC), ' have led to considerable insight into
the nature of magnetic fluctuations in these sys-
tems. As the temperature is raised above the
ordering temperature, they exhibit a crossover
into a region dominated by one-dimensional spin
fluctuations. Part of the interest in quasi-one-
dimensional metallic systems arises because of
the possibility of useful conductivity enhancement
from analogous one-dimensional "superconduct-
ing" fluctuations. ' Three-dimensional ordering
need not actually occur, but strong fluctuations
must.

We report here the results of a calculation of
conductivity enhancement and a study of the re-
lated question of lattice stability, based on an
exact solution of the Tomonaga or Luttinger mod-
el" of the interacting one-dimensional electron-
lattice system. An exact calculation of the pair
susceptibility for this model has exhibited the
divergent superconducting fluctuations" at zero
temperature. The effects of these fluctuations
on the impurity or phonon scattering is found to
cause significant conductivity enhancement" un-
der proper conditions, without necessarily caus-
ing a lattice instability. We also remark on the
similarity of this fluctuation problem with those
encountered in relativistic quantum field theory

in two dimensions (one space and time).
We have used a very general microscopic mod-

el for the one-dimensional interacting electronic
system, including the Fr5hlich coupling to the
lattice as well as scattering from random im-
purities. It turns out that processes at the Fer-
mi level are most important, and it is necessary
with all of these interactions to distinguish the
small-momentum-transfer processes from the
large momentum transfer. The former involve
scattering near 1 Fermi momentum ~kF, con-
serve momentum, and can be solved exactly.
The large-transfer processes involve excitations
across the Fermi line, with momentum near 2k F,
cause momentum relaxation, and can be under-
stood in approximate treatments.

The new result which we find for the dc conduc-
tivity is given by the formula

where g is related to the screened small-momen-
tum electron-electron interaction V by g = Vp
&&(1+2Vp) ', and I'(z) is the gamma function.
Here p is the density of states, I, (2wi~~) ', Whalf
of the bandwidth, o,(T) the Born-approximation
conductivity for impurity or phonon scattering
in the noninteracting electron gas, and we have
assumed that k~T ~& Wexp(-1 '1g'I). The same re-
sult obtains for the small-momentum part of op-
tical-phonon scattering, with the identification V
= —

p, ,'!'Fi~o, where g, is the electron-phonon coup-
ling constant, ~0 the phonon frequency, and W re-
placed by ~i~,. Other excitations, such as exci-
tons, are also described by this formula with ob-
vious identifications. The long-wavelength acous-
tic-phonon contributions are not important, to
the degree that the sound velocity is less than
the Fermi velocity.
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In deriving this expression for o, we have as-
sumed the Born approximation for the impurity
or phonon scattering at large momentum, a.nd

treated the small-momentum part exactly. When

g & 0, from all mechanisms, this is a good ap-
proximation because the vanishing scattering
rate, given by Eq. (1), indicates that higher-or-
der corrections to the Born approximation are
renormalized to zero. Similarly, the large-mo-
mentum-transfer part of the electron-electron
interaction is reduced for g &0, and ha, s there-
fore been neglected in this formula. For g &0,
this approximation cannot be defended in general.
The conductivity vanishes but corrections are not
small, indicating" the onset of localization, a
topic which we will not consider further here.
The divergent conductivity for g &0 as T —0 is
consistent with the divergence of the pair suscep-
tibility found previously in that limit. " Our re-
sults agree with the zero-temperature calcula-
tion of the backwa, rd-scattering matrix element
by Mattis, ' and with the renormalization-group
arguments for weak electron-electron interac-
tion, due to Sdlyom. "

It is widely believed that low-temperature me-
tallic behavior of one-dimensional systems will
be limited by the Peierls lattice instability, con-
verting the metal to a semiconductor. Such an
instability would, of course, render the conduc-
tivity enhancement of Eq. (1) meaningless. How-
ever, an application of our previous calculation
shows that a balance between the small- and
large-momentum interactions can be found which
leads to stabilization of the lattice. The mean-
field-theory equation for the Peierls instability
temperature TF, is given by'

AQ = ki g X(2k F T p), (2)

where y(2kF, T) is the static electronic suscepti-
bility at momentum 2k F and temperature T, gJ.
the electron-phonon coupling constant near 2k F,
and 0 the phonon frequency in the absence of
coupling to electrons. We have solved for y(2k~,
0}, treating the sma. ll-momentum interactions
exactly, " and find, for g&0,

Inserting this result into Eq. (2), we determine
a critical g„such that there is no solution to Eq.
(2) for g &g„and thus no instability. For small
gq, g, = mg&'p/AQ, Eq. (3) shows that X(2k F, 0) is
a monotone decreasing function of -g, so there
mill always be a solution for g, . Because fluc-
tua, tion corrections tend to lower the actual in-
sta.bility temperature, ' this mean-field estimate
is an upper bound on the magnitude of g,—some-
what weaker attractions are required to fully
suppress the Peierls instability.

A small-momentum attraction, g &g„due to
any mecha, nism, seems to provide the most favor-
able circumstance to observe conductivity en-
hancement without lattice instability. Indeed,
the one-dimensional model exhibits" a. "phase
transition at 7'=0," which helps to expla. in the
divergent conductivity. For g & 0, the converse
statement is true —the conductivity is decreased,
the Peierls transition temperature is increased,
and, presumably, problems with localization of
the electronic states occur.

It is interesting to consider the experimental
data~" on TTF-TCNQ from the viewpoint of Eq.
(1). Unfortunately, there are severs, l possibili-
ties and insufficient data at present to determine
convincingly the nature of the metal-insulator
transition. If a Peierls instability occurs, g &g„
oo(T) is predominantly caused by phonon scatter-
ing at 2kF, and the increase in the room-tern-
perature conductivity under pressure" can be
ascribed to a decrease in g, coupled with an in-
crease in g& and the bandwidth, which fits the
increase in the Peierls temperature. The giant
conductivity, reported in some samples, ' is dif-
ficult to understand from Eq. (1), but we believe
this equation provides a firm microscopic justi-
fication of large fluctuation enhancement.

These results have been derived with the help
of the Tomonaga and Luttinger models, "which
properly describe the small-momentum parts of
the problem. The large-momentum processes
are studied as perturbative corrections to this
model. The Hamiltonian can be written as the
sum of two parts, representing this separation,
H =H, +HL„with

H» =H»+Qqc'Fk(pg» —n» )+ z Q»1» p» p»+Q»g, p» (p

where H~ is the harmonic-lattice Hamiltonian, y, a lattice displacement operator, and we have sepa, -
rated the electronic states into those of positive and negative group velocities with n, " and n, " the
corresponding number operators. The density operator p„is defined' by p, = p, "+p„,where p
=Q a», »

"~~a» "~, etc. ; V» is the electron-electron interaction; g, the electron-phonon coupling; and
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all states up to energy &'zkz are filled. The label k runs from -~ to +~, and it is therefore necessary
to introduce a cutoff at the band edges to represent a metal physically. This procedure does not cor-
rectly reproduce those features associated with band edges, but does correctly treat excitations near
the Fermi level. It is these excitations which lead to infrared singularities, the Peierls instability,
and conductivity enhancement; they can be treated exactly. As discussed elsewhere, "H, can be diag-
onalized because the operators p„' satisfy a boson algebra in one dimension, and H, is therefore bi-
linear in boson operators.

The large-momentum part of the problem is best expressed in terms of the density operators" 0„
=+~a„~~"i a~ 'i, etc. , which take electrons from states of one group velocity to the other. In particu-
lar, o» describes excitations across the Fermi line. %e write the large-momentum Hamiltonian as2 F

&~ = p QU, v, "T„I+Qggo~y,+Q Xo, exp(- skB, )+H.c., (5)
k, i

where U, is the electron-electron interaction
near 2k& and ~ represents the effects of scatter-
ing from an impurity at site 8, , assumed to be
distributed at random. It is seen that HI. +H, con-
tain the Fermi-surface effects associated with
one-dimensional systems, but in a form suitable
for application of the exact solution available for
II,.

In order to compute the conductivity result of
Eq. (I), we have used a procedure introduced by
Gotze and %61fle." Consider, for simplicity,
U, =g~ =0, and write down the equations of mo-
tion for the density-density response function, in
the basis for which H, is diagonal. Comparison
of this equation with the hydrodynamic equation,
which defines the momentum relaxation time,
gives the result

T ' = 2 A'c ((u p)
' Imp, ((o„a„')), (6)

where c is the impurity concentration, ~ the
frequency, and we have used standard notation
for the response function. " This latter function
has been computed exactly, " and the result for
~-0, Eq. (I), is immediately obtained. Equa-
tion (6) exhibits interesting frequency and tem-
perature dependence, which cannot be discussed
here because of length restrictions. This result
can be readily extended to phonon scattering or,
in fact, scattering from any fluctuations.

The response functions appearing in Eq. (2) and
Eq. (6), calculated elsewhere, '0 exhibit many sim-
ilarities (in the zero-temperature limit) with cer-
tain vacuum expectation values in the Thirring
and Schwinger models of two-dimensional rela-
tivistic field theory. " These models also have
infrared problems, have been solved exactly, and
contain essentially the same mathematical prob-
lems as the Hamiltonian of Eq (4). Ther. e are
trivial differences associated with the band-edge
cutoff, and an extra phase factor in the definition
of the field operators to account for the Fermi

sea. In this older language, the large-momentum
part of the interaction described by Eq. (5) cor-
responds to a scalar coupling of the fields, with
scalar coupling to fixed-source fields represent-
ing the impurity scattering. The relations be-
tween these models have been emphasized by
%'ightman, "but to our knowledge have not as yet
been fully exploited in studying the fluctuation
problems of interest here. It might be said (with
tongue in cheek) that our calculation has deter-
mined the temperature dependence of the resis-
tance in the Thirring model.
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It is shown that quasielastic knockout (e, 2e) of electron by a fast electron from a thin
solid film presents direct information about both the k and ~ dependence of the single-
particle, spectral-weight function A(k, ~) of target electrons. We discuss the expected
manifestation of Mahan-Nozieres edges and their plasmon satellites in an (e, 2e) experi-
ment side by side with that of plasmaron hole states.

The high-energy, quasielastic knockout of nu-
cleons or nucleon clusters [(p, 2p), (p, pd), etc. ]
is a powerful tool for nuclear-structure research. '
Several years ago the (e, 2e) quasielastic knock-
out process was proposed by Smirnov and one of
the authors' for the investigation of electron wave
functions in atoms, molecules, and thin solid
films. Its advantage in comparison with the
methods of positron annihilation and Compton
scattering profiles' consists in the possibility of
obtaining the momentum distribution of the tar-
get electron for the fixed value of its binding en-
ergy side by side with the fixed orientation of its
quasimomentum in a monocrystal. The disadvan-
tage of the (e, 2e) method is that it cannot be used
for the investigation of thick solid (d & 250 A) or
liquid targets.

Subsequent papers have exhibited both various
theoretical aspects of the problem mentioned' '
(in particular the manifestation of the band struc-
ture of solids'-"') and the first experimental re-
sults for solid' and gas' targets (with the best en-
ergy resolution at present' ~ =1-2 eV). Rather

rapid further experimental progress is to be ex-
pected.

The first problem considered in the present pa-
per concerns the Mahan-Nozihres edges' and
their plasmon satellites. " The main difference
between the (e, 2e) process and x-ray absorption
considered earlier'" is that the final electron is
not near the Fermi surface but is ejected into
the high-energy (a few keV) continuum described
by plane waves. Thus only the polarization of the
degenerate electron gas by the suddenly appear-
ing deep hole is present as a collective effect
(high-energy x-ray photoemission would be, of
course, similar in this respect). In terms of
Ref. 9 we obtain information about singularities
of the deep-electron spectral-weight function
Z((u} itself.

For describing this effect we should generalize
the formulas of our previous papers. " Namely,
we should replace the quantity fI(& ~ —e-) 5&- en-
tering into equations for the Sommerfeld model
of a degenerate electron gas-' by the general
electron spectral-weight function A(k, & )."We
obtain

d'0 2 Pr'F2 Cl 0
A V5(E, E, —E, —( }A(k, u:-)

a.s the (e, 2e) cross section for a unit crystal volume containing A electrons (V is the volume of the


