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non decay processes and that this is evidence for
y being negative in this pressure region.
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FIG. B. Variation of the angular spreading of the
slit source beam half-width at 1' peak height as a
function of pressure for various source temperatures.

observed. However, the increase in 48' as the
mean phonon energy increases and as the pres-
sure decreases is in qualitative agreement with
the expected behavior for a three-phonon decay
process when y is negative at P ~ 17 bars and ty I

increases with decreasing pressure. The broad-
ening is certainly not due to interactions with the
background thermal phonons since even at the low-
est pressure the width of the distribution is inde-
pendent of the background helium temperature be-
low™0.25 K, and the fact that the distribution
goes to the geometric limit at P &17 bars rules
out the possibility of broadening due to four-pho-
non decay processes or impurity scattering. %'e

therefore conclude that the broadening we ob-
serve at P ~ 17 bars is consistent with three-pho-
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Experimental Determination of the Viscosity and Density of the Normal Component
of Superfluid 3He at the Melting Curve
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The viscosity and the density of the normal component of liquid 3He in the A and h
phases have been determined at the melting curve with a vibrating-wire viscometer.
The results show that resistive flow of the liquid is accompanied by a flow of zero vis-
cosity. The data thus prove superfluidity both in the A and in the B phase.

The first clear indication of superfluidity in
liquid 'He was the drastic change' in the damping
of a vibrating-wire viscometer at the A and 8
transitions. Using the same technique with im-
proved resolution, we have now been able to es-
tablish quantitative values for g„and p„, the vis-
cosity and the density of the normal component
of liquid 'He, respectively, as a function of tera. -

perature. Our results show that viscous flow in
the A and B phases is accompanied by friction-
less flow, i.e., the two phases of 'He behave as
supe rfluids.

Several vibrating-wire experiments' ' in 4He

and in normal 'He have successfully been inter-
preted in terms of Stokes's' theory of an infinite
wire of circular cross section oscillating in an
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unbounded fluid. He obtained

F = —va'p[k(m) dv/dt +(uk'(m)v]

for the force per unit length of a wire vibrating
with a small amplitude at an angular frequency
~ (2v x1900 sec ' in our case). Here a is the ra-
dius of the wire and p is the density of the fluid;
v =Re(v, e~') is the velocity of the wire T. he pa-
rameter m is given by m =a/25, where 5 = (rt/
p&u)'I' is the characteristic length of decay for
the velocity field around the wire, i.e., the vis-
cous penetration depth. Functions k(m) and k'(m),
as introduced and tabulated by Stokes, determine
the hydrodynamic mass and the damping of the
wire.

Stokes's model can be modified to describe a
two-fluid system with an isotropic superfluid
component. ' In this case we obtain from Eq. (1)

F = —na'([p„k(m ) + p, ]dv/dt + u) p„k'(m) v), (2)

where p, is the density of the superfluid compo-
nent. The total density of the fluid p is the sum
of p„and p„now we have 5 = (q„/p„co)'". Equa-
tion (2) shows that the nonviscous component of
the fluid influences the hydrodynamic mass of
the wire only, but cannot cause damping of the
oscillations. We assume that this description is
also valid in the case of an anisotropic super-
Quid, provided that g„, p„, and p, are replaced
by the suitably averaged quantities g„, P„, and

ps
An approximate solution for the shift of the

resonance line of a vibrating-wire viscometer
is then given by

ace�„=

~g (u, [p„k(m) +p, ]jp ~,

where ~, is the resonant frequency in vacuum
and p„ is the density of the viscometer wire
(NbZr, pv= 7.79 g/cm'). In the same approxima-
tion the width of the resonance at half-maximum
becomes

After combining Eqs. (3) and (4) we find

k —1 26(d~ —(p/py)&d()
6(d g

If both h&us and A~~ are measured, Eq. (5) can
be used to obtainm and, hence, q„/p„; Eq. (4)
may then be employed to solve for g„and P„sep-
arately. We emphasize that Eqs. (3)-(5) are not
exact and were not used in our final calculations;

iterative processes were actually employed.
If the oscillation amplitude r, of the wire is of

the same order of magnitude as the radius a of
the wire, Stokes's solution' may fail through the
omission of quadratic terms in the Navier-Stokes
equation. In our experiment, however, x, is al-
ways several orders of magnitude smaller than
a. In this case Fisk' has shown, by using the rel-
evant Reynolds and Strouhal numbers, that Stokes's
solution remains valid as long as the inequality
r,/L«1 is fulfilled. Here L is a characteristic
length, either the radius a (0.15 mm in our case)
of the wire or the viscous penetration depth 5,
whichever is smaller. At our lowest experimen-
tal temperatures, below 1.3 mK, r,/a = 10 ' and

r,/5 = 10 '; Fisk's condition is thus amply ful-
filled. Further, the correction to Stokes's solu-
tion due to the finite size of the 'He sample' is
estimated to be small in the experiment; the ra-
dial distance of the wire to the cell wall is 2 mm
in our case.

We refrigerated the 'He specimen by means of
Pomeranchuk's method. ' After 'He had been
brought to a temperature well below the B point,
pressurization was stopped and the sample was
allowed to warm through the B' and A transitions
under the inQuence of the stray heat leak. Warm-
ing-up rates of about 10 pK sec ' were typical.
Sometimes the pressure was slowly released dur-
ing warming. The cycle was then repeated. Res-
onance curves were measured while traversing
the A and B phases and the normal Fermi-liquid
region in both directions; ~(d„and her~ were then
determined from the data. The measuring tech-
nique required that the sample be exposed to a
magnetic field of 0.149 T during the experiment;
other experimentalists' as well as ourselves"
have shown that a field of this magnitude does not
alter the conclusions derived from these results.

The values of ~u„and ~~~ from our measure-
ments in the normal Fermi-liquid region were
first analyzed to find the viscosity of 'He from
about 15 mK to the A transition. The data are
consistent with the T ' law expected for a nor-
mal Fermi liquid. "'" We obtain for the viscos-
ity at the A point rt„= 0.127 P."

Next, the measured resonance shifts, both in
the normal 'He and in the A and B phases, were
plotted against the corresponding resonance
widths. The difference in a(d„between the nor-
rnal Fermi-liquid phase and the superfluid phas-
es at equal damping, 5 ~~„, was then used to de-
termine q„and p„as described above; the maxi-
mum difference, observed at -1.2 mK, is about
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FIG. 1. Width of the resonance curve at half-maxi-
mum as a function of the relative resonance shift be-
tween the resonance curves of equal damping in the
normal Fermi-liquid region and the superfluid phases
of 3He. Several lines of constant q„and p„have also
been plotted in the figure. Open symbols represent
points taken upon cooling and filled ones during warm-
ing; circles are for in the A phase and triangles for
in the 8 phase.

FIG. 2. Reduced average viscosity q„jqz of the nor-
mal component of superfluid 3He at the melting curve
as a function of temperature; ~ is the viscosity of
normal He at the A point. The tentative temperature
scale was plotted by assuming TA =2.6 mK (Refs. 10
and 12) and dP/dT =-35 bar/K on the melting curve
at 1'& TA. The pressure difference relative to the A
transition is also indicated. For an explanation of the
data symbols we refer to Fig. 1. The curves and ar-
rows have been drawn as visual aids only. The error
bars reflect the estimated uncertainty of + 0.15 Hz in
the determination of the shifts of the resonance curves.

2.5 Hz. The data were also found to be self-con-
sistent, within the framework of Stokes's model,
through an examination of the relation connecting
the amplitude and the width of the resonance
curves.

In Fig. 1 we have plotted a~~ as a function of
66~~. The data were measured during a run in
which the A and B phases were traversed three
times. Lines of constant Ft„and P„are also shown
in the figure. Figure 2 illustrates our results on
q„/q„and Fig. 3 on p„/p.

We observe from Fig. 2 that, as the sample
cools through the A tra.nsition, q„decreases rap-
idly, within 0.3 mK, to approximately 25% of q„
and then becomes essentially constant. The de-
crease is much faster than (T/T„)', estimated
by Greytak eI, al."for the B phase from heat-
flow measurements at lower pressures. At the
B transition, below 1.7 mK, q„drops discontinu-
ously to about 20%~ of g„but starts to increase
again as the temperature is reduced. Upon warm-
ing back to the A phase q „returns to 25/0 of q„
via the lower set of points which thus seem to
characterize the B phase. We note in passing that
the viscosity of both 'He and 'He behave in the su-
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FIG. 3. Reduced average density p„/pA of the normal
component of superfluid He at the me1ting curve as a
function of temperature; pA is the total density of ~He

at the A point. The slight variation of p, as a function
of pressure, was taken into account in the normal Fer-
mi-liquid region by extrapolating the data of Grilly
(Ref. 12). For an explanation of the data symbols we
refer to Fig. 1.
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perfluid region in a rather similar way. A cal-
culation of viscosity for an isotropic Fermi liquid
by Shumeiko" is in fair agreement with our re-
sults. His theory gives q= const (&q,) for T«T,
and g=q, (1 —an/T) in the vicinity of T,. Here a
is a constant and a is the energy gap; in our com-
parison we assumed T, =T„and q, =g„. Seiden's
calculation" for T «T, predicts q to be a weak
function of temperature. Quantitative compari-
sons between these theories and our measure-
ments are, however, difficult to make.

Figure 3 shows that in the A phase p„decreas-
es relatively slowly with temperature, approxi-
mately as T/T„. This is in fair agreement with

the fourth-sound measurements of Kojima, Paul-
son, and Wheatley. " However, at the B transi-
tion p„drops abruptly from about 60 to 25% of p
and then decreases rapidly upon further cooling;
at our lowest experimental temperatures, below
1.3 mK, p„ is 1% of p. The jump in p„, if any,
in warming through the 8' transition is small.

Weak-coupling theories predict that p„decreas-
es most rapidly for the isotropic states. In this
case p„/p can be described by the Yoshida func-
tion" which gives the same value for p „at T/T,
=0.3 as we find experimentally at 1.3 mK. How-

ever, our experimental temperature corresponds
to T/T, ~ 0.5, assuming for T, a maximum tem-
perature of the A transition, 2.6 mK. The agree-
ment between theory and experiment becomes
even poorer if the Fermi corrections, through
Leggett's formula, "are introduced.

If it is possible that the wire has an orienting
effect on the liquid, which tends to rotate the or-
bital angular momentum perpendicular to the
wire's surface, a proper angular average could
conceivably emphasize the directions where the

gap is largest. However, it is not probable that
this effect could be so large as to explain the dis-
crepancy, because, e.g. , in the Anderson-Morel
state p. /p, even in the most favorable direction, "
does not decrease more rapidly than in the iso-
tropic states.

A more likely explanation follows from the ex-
perimental observation" that the specific heat
below the A transition is larger than weak-cou-
pling theory would predict. If this is true also in

the 8 phase, the gap decreases actually faster
than predicted by conventional BCS-type calcula-
tions and consequently also p„vanishes more rap-
idly.

The rapid variation of P„as a function of tem-
perature below the B transition seems to be in

disagreement with the data of Kojima, Paulson,

and Wheatley"; they observed no appreciable
change in the temperature dependence of p„near
B'. The experimental discrepancies may indicate
that the bulk properties of the 'He superfluids,
particularly those of the B phase, are changed
when the liquid is contained inside a porous medi-
um necessary for the observation of fourth sound;
this could easily lead to spurious conclusions.
Major changes in the bulk properties of the su-
perfluid phases have been observed in NMR mea-
surements" when 'He was intermixed with fine
platinum powde r.
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We examine the dynamic and thermodynamic properties of adsorbed liquid films in
cylindrical cavities. We find a dynamical stability limit for the thickness of films ad-
sorbed uniformly on the walls. This limit is shown to coincide with a thermodynamic
stability limit which depends on both substrate and capillary forces. The Kelvin equa-
tion describing capillary condensation is generalized to include the substrate interac-
tion. The low-temperature properties of the films are calculated.

Considerable attention has been directed re-
cently toward understanding the excitation spec-
trum and thermal properties of multilayer He'
films. ' ' The film differs from the bulk liquid
for several reasons, including explicit size ef-
fects associated with the boundary conditions for
the velocity and superfluid order parameter, and
exchange of particles, energy, and momentum
with both vapor and substrate. As one or more
dimensions of the film becomes comparable to
or smaller than the thermal wavelength of the
excitations in bulk He', the excitation spectrum
begins to take on discrete character, leading to
pronounced modification of the thermal behavior.

In this paper we report studies of volume and
surface excitations of liquid films in partially
and completely filled cylindrical cavities, an
idealization of the geometry in a porous material.
Anomalous behavior of the calculated spectrum
leads us to consider the thermodynamics of ad-
sorption. We then generalize the Kelvin equation
to include the substrate potential, obtaining re-
sults applicable to the adsorption of He' and those
normal liquids which wet the substrate walls.

We take the liquid to be compressible, inviscid,
and irrotational with velocity V = &cp. We consid-
er motion of a single component (superfluid) alone,
neglecting effects of the normal fluid in the bound-
ary healing region. This is plausible for a rela-
tively thick film of He' at low temperature. By
linearizing the continuity and Euler equations,

we find for motion at frequency ~

&'y+ (&u/s)'y = 0,

where we take the speed of sound s to be constant.
The modes of the system are determined by solv-
ing (1) subject to appropriate boundary condi-
tions. ' The solutions are of the form

y =f, (r) exp[i(l~z +m &)J

in terms of variables ~, 0, and z appropriate to
the cylindrical symmetry. In all cases f„ is ex-
pressed in terms of Bessel functions.

The most interesting case is that of partially
filled pores [illustrated in Fig. 1(a)]. The eigen-
frequencies, when l' =0' —~'/s' &0, are given by

w, ' = [-g(a) + (o'/p, a')(1 —m' —k'a')]

x l(d lnf, /dr)„

Here Mg(a) = —(dU/dr), „where M is the atomic
mass and U(r) is the Van der Waals potential due

to the substrate; 0' is the surface tension. ' We
identify these modes as ripplons in the sense that
such surface oscillatory modes occur in the lim-
it of an incompressible fluid, in which case 1 is
replaced by k.

The ca.se m=0, lA --(1 is of particular interest.
Using the small-argument limit of the Bessel
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