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The 2° level in *Be at the threshold for the reaction 'Li(p,7)"Be is shown to be a virtual
state relative to threshold. A description of the state as an S-matrix pole in the scatter-
ing-length approximation gives a good account of its properties as observed in different
reaction channels, and, in particular, removes an apparent contradiction about its width
as observed through particle and y-ray channels. The width of the 2° state is found to be

about 50 keV.

Effects due to the presence of an excited state
near a threshold for particle emission have re-
ceived considerable study’ in scattering theory.
The most striking effect, known as the Wigner
cusp,? is expected when there is an excited state
of appropriate spin and parity near a neutral-par-
ticle threshold, and a number of states in light
nuclei have been correlated with such thresholds.
For the most part, however, the connection be-
tween theory and the observed features of these
states is tenuous. Application of the Breit-Wig-
ner formalism is potentially misleading. Indeed,
for the case considered here, where there is a
wealth of experimental data, it is not obvious that
the features observed through different reaction
channels are due to a single isolated energy level,

Without question the 2~ level at the neutron
threshold in ®Be is the classic example of a state
near threshold. The cross section for the reac-
tion "Li(p, n)"Be rises rapidly to about the 2~ par-
tial-wave unitary limit as the proton energy
crosses the threshold at £,~1881 keV, and re-
mains large for at least 400 keV above threshold;
the cross section for the inverse reaction at
thermal neutron energies is a remarkable 50 000
b. Hanna® concluded that these features are due
to a level in ®Be with a width not greater than 30
keV. The "Li(p, p’)"Li* cross section®~® shows a
pronounced drop just above the (p, n) threshold
that is obscured somewhat away from threshold
by a rapidly varying d-wave penetration factor
for inelastic protons in the 2~ partial wave and
by the background of other partial waves. All of

3,4

the above features are accounted for by the one-
level Breit-Wigner analysis of Newson et al.,®
and their assignment of a 2° state at £,~1900
keV with T" > 500 keV is presently accepted. How-
ever, it is difficult to resolve the large ratio of
the reduced widths (y,*/y,?~5, v,°>yy?/3) ex-
tracted from their analysis with the absence of
capture y rays from the 2" state to the 2* first
excited state of ®Be. One would expect to see
this electric dipole transition unless the 2~ state
is isospin zero, in which case y,,‘°‘=y,2. Recently,
Sweeney and Marion® studied the reaction "Li(p,
v)2Be*(16.63 and 16.90 MeV)— 2« and observed a
state at the (p, n) threshold with a much narrower
width (I'=150+ 50 keV), The results of Sweeney
and Marion are consistent with a 27, 7=0 state
at threshold, but appear difficult to reconcile
with the interpretation of earlier experiments.
The excitation curves for "Li(p, p)"Li elastic
scattering'®'! show a distinct anomaly at the
(p, n) threshold. Unfortunately, these data ex-
hibit strong interference effects from a coupled
pair of 3" states located above threshold, so a
direct analysis for information on the 2 state is
not feasible. The key to the matter is a reduction
of the elastic scattering data to phase shifts, for
which we refer to an analysis in the energy re-
gion of interest'? and an interpretation’® of the
anomaly observed in the °S, phase at the (p, n)
threshold. The behavior of this phase provides
new information about the 2~ state that is impor-
tant to both the interpretation of the above-men-
tioned reactions and the nuclear structure of neg-

895



VoLuME 32, NUMBER 16

PHYSICAL REVIEW LETTERS

22 APRIL 1974

»
g
g
=
&
(48]
0 (I |
T T T T
T , ]
150 |- | s One’k (b)
& 1
E 100 |- ‘
~ }
.g 1
‘; N
5% |
b |
|
0 1 T 1 }k
T T T T
80 —
_ N . ...i...........ﬂ
S go © —
£ (c)
] 40
b
- 2- .
20 Opa
o | | T T
1750 1800 1850 1900 1950 2000
Ep(keV)

FIG. 1. Scattering-length—approximation fit to the
data. (a) *Li(p, p)'Li 2° phase shift from Ref. 12.
() "Li(p,n)"Be reduced cross section (0,,/k) from Ref.
14. () "Li(p,#’)"Li cross section from Ref. 8. The
(b, 0') data from Refs. 6 and 7 show a slightly more
pronounced drop which starts at the (p,7) threshold.
It is the relative absence of structure in the (p, p’)
channel compared to the (p,7) channel that provides a
constraint on the scattering-length—approximation pa-
rameters.

ative-parity states in ®Be.

The 2~ state of ®Be is called a threshold state
because the data (see Fig. 1) show no features
above or below the "Li(p, n)’Be threshold which
can be used to mark the energy of the state; thus,
it is not a resonance in the usual sense of the
term.

A multichannel scattering-length approximation
is used to analyze the 2~ partial wave near the
(p, n) threshold. The approximation is exact at
threshold, and its use is clearly preferable to the
use of the Breit-Wigner resonance form for the
intended application.®'¢

Neutrons emitted from ®Be must be s waves for
energies sufficiently close to the "Be +n threshold,
and therefore restricted to the 1 and 2~ partial
waves. Earlier work indicates that emission in
the 1° partial wave is negligible., The 2~ partial-
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wave S matrix has six channels if d waves are
included for the proton channels; of these, we
neglect the two d-wave elastic proton channels
and treat the two d-wave inelastic proton channels
as one. The resulting three-channel S matrix is
expanded in rational form about the threshold,
with terms linear in the neutron wave number &
retained and subjected to the constraints of open-
channel unitarity and symmetry above and below
threshold. The diagonal elements are

Syp=Sp, (1 = ib*k)/(1 — iak), (1)
Spepr =S, (1 = ibR)/(1 - iak), (2)
Spe= (1+iak)/(1 - iak), (3)

where a=a,+ ia; is the scattering length, b=05,
+ib; is a subsidiary scattering length, and S,
=1 exp(2i,,') and S,.,.'=n exp(2i6,,,.") are ele-
ments evaluated at threshold. The moduli of the
off-diagonal elements are given by the permuta-
tions of

1S;;17= 2(1Sx ol® = 14317 = 1S 551+ 1). (4)

The elements of the open-channel matrix below
threshold are obtained from the above expres-
sions by setting 2=ica. The S matrix has a sim-
ple pole at k=k,+ik;= —i/a, and the state repre-
sented by this pole is bound relative to threshold
if @, <0 and unbound (or virtual) if @,>0."" The
only virtual state that has been established with
certainty in nuclear physics is the ‘So state of the
deuteron.

The scattering-length—approximation S matrix
depends on seven parameters, of which only
8,1, cannot be determined from existing data.
The other six parameters can be obtained as fol-
lows: The "Be destruction cross section for
thermal neutrons, o,,+0,,,= (50 +8)x10°b,®
vields a;=0.12+0.02 keV"'% the ratio, 0,,./0,,
=0.02+0.01,' yields bn%/a;=0.96 +0.02; the
magnitude and shape of 0,,'* require a,?/a;* «1'%;
the shape of ¢,,, below threshold® requires 8,/a,
=1.00+0.04; the magnitude of the drop in o,
above threshold, 8 +3 mb,® yields n%=0.95+0.03,
with the result that b;/a;=1.01+0,05. It is worth
noting at this point that the reaction data fix only
one of the two parameters needed to specify the
location of the pole. The other is obtained from
the °S, phase shift. In particular, the decrease
of the 582 phase shift above threshold [see Fig.
1(a)] requires that a, >0, or, equivalently, that
the 2~ state is virtual relative to threshold. The
behavior of the °S, phase below threshold yields
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FIG. 2. Comparison of (a) scattering-length—approx-
imation S-matrix denominator with (b) a Breit-Wigner
denominator of the same full width ' centered at thresh-
old (solid lines). The dashed lines show the degradation
for a 20-keV-thick target.

5,,' =85°+5° and ¢,=0.04+0.02 keV"2, A com-
parison with the data for b= =0.05+0.12; keV "2,
n%=0.95, and 6,,'=817° is shown in Fig. 1. This
choice for the scattering length corresponds to a
pole of the S matrix at k= -7 - 3i keV¥2, The pa-
rameters obtained from this analysis show that
the 2~ S matrix is a slightly perturbed (n?=0.95)
two-channel S matrix, and that our truncation of
the six-channel S matrix to three channels is a
reasonable approximation.

Now that the pole parameters of the S matrix
have been determined, it is possible to consider
the characteristics of the 2~ state. The spectral
line shape 11 - igkl|~? is shown in Fig. 2(a), and,
for comparison, the line shape of a Lorentzian
with similar width is shown in Fig. 2(b). The
dashed curves in each case show the degradation
due to a 20-keV-thick target.?® Two differences
between the threshold and Lorentzian line shapes
are important for the purpose of determining the
width of a threshold state from experimental
data. First, much of the strength of the thresh-
old state is retained in the wings where it cannot

be judiciously subtracted from a real background.
Second, the peak height is substantially reduced
(25% versus 5% for the Lorentzian) by a target of
comparable thickness. These two features of this
threshold state suggest that an experimentally
relevant definition of a full width at half-maxi-
mum, valid for all threshold states, is some-
what impractical; nevertheless, it is clear that
the width of the 2~ state is about 50 keV, and
much less than 500 keV in any event. The un-
certainty in the 50-keV width is £ 20 keV, and is
due primarily to the uncertainty in o,, for ther-
mal neutrons. It should be noted that the pole of
the S matrix is located 2k, k; =42 keV off the real
axis in the complex energy plane, and this dis-
tance from the axis corresponds to a Breit-Wig-
ner width® of 84 keV. The analysis by Newson
et al.,® which is equivalent to the present work
with a,=0, would result in the pole being on the
real axis and a negligible Breit-Wigner width.
The 150 + 50 keV width observed by Sweeney and
Marion® is larger than the 50-keV width obtained
here, but this difference can be attributed to the
uncertainty in extracting a width from the "Li(p,
v)eBe*—~ 2¢ data.?

The scattering-length analysis does not provide
new information on the isospin of the 2" state.
However, Bassi et al!® have measured the "Be(,
v)¥Be*(16.63 + 16.90 MeV)—~ 2« cross section® for
thermal neutrons. Their result, 0ny =155 mb,
when compared with the measurement of o,,=1.43
+0.85=2,28 ub by Sweeney and Marion,® provides
a rough estimate of the 7=1 isospin impurity of
the 2~ state. Following Barker and Mann,** we
have

o =Fa 2, )( — >2= 1.5%10"°
Oy ky ° 7P\ - ’
where the kinematic factor is 3.5%1075 for ther-
mal neutrons, We find a 7=1 isospin impurity
of less than 4% in intensity, and note that it may
be much smaller because the uncertainty of the
background subtraction and degradation for o,,
mentioned above can only increase the experi-
mental ratio and, therefore, reduce the impurity
content,

All experimental data on the 2~ level at 18.9
MeV in ®Be are consistent with a state that is
narrow and isospin zero.

*Fellow of the Carnegie Institution of Washington.
T Fellow of the Swiss National Foundation and the Car-
negie Institution of Washington. Present address:
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12C(e,e’p) Results as a Critical Test of an Energy Sum Rule
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The reaction '’C(e,e’p) at 497 MeV in conjunction with a distorted-wave impulse-ap-
proximation analysis was used to determine kinetic and separation energies of bound pro-
tons. The spectral function for separation energies less than 74 MeV provides only half
of the total binding energy; i.e., the data do not satisfy Koltun’s sum rule. The momen-
tum distributions are compatible with elastic electron scattering.

In a Letter by Koltun! a sum rule relating kinet-
ic and separation energies of bound protons to the
total binding energy has been established and suc-
cessfully applied to (p, 2p) data.? We present re-
sults from the reaction 2C(e, e’p) which by far do
not satisfy this sum rule whose only model as-
sumption is that of two-body forces. Our data
also show that the often discussed incompatibility3
of (e,e) and (e, e’p) data does not exist.

The experiment was performed with electrons
of T,=497 MeV from the Saclay linac. In the fo-
cal plane of a first spectrometer the positions and
directions of outgoing protons with energies 78 <7,
<94 MeV were measured; those of the coincident
electrons, with a second spectrometer at a fixed
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angle 6,.=-52.9°. For each event, the recoil
momentum K=k, -k,, ~ K, of the A - 1 nucleons
and the missing energy E, =T,~ T, - T, - k?*/
2M ,_, were determined with a resolution of Ak=6
MeV/c and AE, =1.2 MeV, respectively. By vary-
ing T, and the proton scattering angle, a range
0<E, <74 MeV and 0 <k <300 MeV/c was covered.
A more detailed description including data on 288i,
%0Ca, and °®Ni will be published elsewhere.

The estimated absolute uncertainty of the dif-
ferential cross sections is 20%. The magnitude
of the radiative corrections* is seen in Fig. 1
which contains the cross section averaged over
the recoil momenta 0 < 2 <60 MeV/c versus the
missing energy. For E, >25 MeV, one notices



