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The high-pressure form of cerium metal stable above 56 kbar is found to be ortho-
rhombic with the &-uranium type of structure. The effective metallic radius and the ob-
served compressibility correspond to full tetravalency for cerium. A second, metasta-
ble form of cerium metal with a monoclinic structure has also been observed above 60
kbar.

A number of investigators have observed a
phase change n -~' in cerium metal. The transi-
tion pressure as determined from resistance
measurements has been reported to be 60-65
kba, r, ' 50 kbar, ' and 56 kbar. ' lt is assumed in
the present paper that the most recent value of
56 kbar is correct for high-purity metal. Ac-
cording to Wittig' the e' phase is superconduct-
ing below 1.7'K.

We have taken numerous in situ x-ray diffrac-
tion patterns of various cerium metal prepara-
tions of high purity up to about 110 kbar. The
diffraction patterns were obtained with diamond-
anvil screw-loaded equipment of the Bassett
type, ' using filtered Mo Ka radiation. The analy-
sis of the patterns proved to be difficult because
of large hysteresis effects and the coexistence
of two or more phases. We can report the follow-
ing preliminary results for our studies.

We have observed the y and a phases in meta-
stable coexistence at 8 and 14 kbar where the
pressures are deduced from the lattice constants
and known compressibility of y-Ce. The lattice
constant of n-Ce wa.s found to be 4.832+ 0.004 A
and 4.801 ~ 0.004 A at 14 kbar. Single-phase pat-
terns of o. -Ce with lattice constants down to
4.629~0.004 A were observed, and it was as-
sumed that this value corresponds to the pres-
sure of 56 kbar. Accordingly one finds an aver-
age value of K = (2.6~ 0.2) x10 ' cm'/kg for the
compressibility of n-Ce.

At least two high-pressure forms of cerium,
a' and n", have been observed. n'-Ce is ortho-
rhombic, C centered, with four atoms per unit
cell. At 66 kbar the cell dimensions (accuracy
of ~ 0.01 A) are a = 3.06 A, 5 = 6.01 A, c = 5.23 A.
The structure of e'-Ce is that of a-U. e'-Ce

was observed in coexistence with a-Ce at pres=
sures as low as 43 kbar and as high as 62 kbar,
the pressures being deduced from the observed
lattice constants and compressibility of n-Ce.
The volume contraction of n'-Ce from 43 and 62
kbar corresponds to a compressibility of A = (1.5
+0,3) x10 ' cm'/kg.

e"-Ce is monoclinic, body centered, with two
atoms per unit cell of dimensions a =4.79~0.02
A, b =3.20+0.01 A, c =3.18+0.01 A, P =92.1
+ 0.2 at 56 kbar. The structure is a distorted
cubic close-packed atomic arrangement. Sam-
ples containing the o. " and n phases (as well as
the n' phase) have been found in the 51-62-kbar
range. Above 62 kbar the diffraction patterns
show the presence of the n' and n" phases. How-

ever, the relative proportion of the two phases
varies widely and depends upon the rate at which
the pressure was increased. We believe that e"-
Ce is a metastable phase formed by a second-or-
der reversible transformation from the e phase
at about 60 kbar. Above this pressure a"-Ce
changes irreversibly to o. '-Ce, but the transition
is very sluggish.

Franceschi and Qleese' have reported that n'-
Ce is cubic, face centered, with a lattice con-
stant a =4.66+ 0.01 A which remains unchanged
from 50 to 80 kbar. We find that the lattice con-
stant of n-Ce decreases uniformly with increas-
ing pressure from 4.832~ 0.004 A at 8 kbar to
4.606+ 0.004 A at 62 kbar. It seems thus that
Franceschi and Qlcese observed only n-Ce and
that the pressure in their experiments did not
exceed 48 kbar. McWhan' suggested that e'-Ce
is hexagonal with a =3.16~0.01 A, c =5.20+0.02
A at about 65 kbar; but the agreement between
observed and calculated spacings is poor. How-

773



VOLUME 32, NUMBER 14 PHYSICAL RKVI K%' LKTTKRS 8 APRIL 19&4

ever, the Mc%han data are in excellent agree-
ment with the orthorhombic structure for o, '-Ce
described above.

The metallic radii (as defined in terms of the
experimental atomic volumes') of the various
forms of cerium metal adjusted to room pres-
sure and temperature are 1.824 A for y-Ce,
1.719 A for e-Ce, and 1.675 A for e'-Ce. How-

ever, at the transition pressure of 56 kbar the
difference in size is much smaller, with an ef-
fective metallic radius of 1.636 A for n-Ce and

1.627 A for n'-Ce. %e find that the atomic vol-
ume is the same (within experimental error) for
the e' and e" phases.

The experimental value of the cerium radius in
n'-Ce is nearly identical with the value obtained
for tetravalent cerium metal by extrapolation
from the 3d and 4d series' and suggests the com-
plete absence of localized 4f electrons in o' Ce-

As far as we can tell from the diffraction in-
tensities, the single positional parameter in the
n'-Ce structure has the same value as the n-U
structure. Thus each metal atom forms four
short bonds, all directed within one hemisphere.
However, the metallic radius of uranium in n-U

is much smaller than of cerium in o. '-Ce because
uranium is hexavalent' and cerium tetravalent in
these metal structures.

The occurrence of the unusual metal structures
for the low-temperature forms of uranium, nep-
tunium, and plutonium, and now for a'-Ce, sug-
gests a correlation with admixture off character
in the valence- electron band structure. However,
we can offer no reasonable explanation why a'-
Ce with four valence electrons and o.-U with six
valence electrons are isostructural.
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A method which represents surface electronic structure exactly in terms of local func-
tions is tested by applying it to a one-dimensional surface potential. A single four-pa-
rameter variational calculation yields continuum and surface-state wave functions for an
entire perturbed band. Comparison with exact solutions obtained independently indicates
that the calculation is quite accurate.

There is ample experimental evidence that the
effects of a surface on the electronic properties
of a solid, while locally strong, are rapidly
damped so that such observables as charge den-
sities and local densities of states quickly revert
to their bulk values. ' This suggests an inherent
advantage in a description of the electronic struc-
ture in terms of local functions as opposed to a
description in terms of wave functions, since the
local description may more easily exploit the
local nature of the surface perturbation. The
generalized-%annier- function concept rec ently
introduced by Kohn and Qnffroy" describes the
electronic structure exactly in terms of local

functions ukieh may be calculated directly seith-
out first calculating waue functions. We report
here the first test of this new concept and method
as a practical tool for calculating the electronic
structure of solid surfaces.

Generalized Wannier functions (GWF's) are the
counterparts for crystals with defects of the fa-
miliar %annier functions of perfect crystals.
They are atomiclike functions localized about the
lattice sites of the system and represent an alter-
native basis for the description of the electronic
structure of the defect problem. A single set of
GWF's is sufficient to describe an entire per-
turbed band, and only those GWF's near the de-


