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and
H(t) <[1-¢2][1+0.391(1 -¢)], ¢=s1. (9)

This equation also does not predict a positive
curvature.

Eilenberger'® has calculated «, (¢), starting
from Gorkov’s equations, for a series of ratios
of coherence length to mean free path, valid for
all temperatures and including anisotropic im-
purity scattering. These results show that the
temperature dependence of «,(t) [and thus H ,(t),
via Eq. (7)] is strongly dependent on scattering
anisotropy at all temperatures. (This includes
higher temperatures where positive curvature is
found, and where no other anomalous critical-
field effects due to anisotropies have previously
been found.) Strong anisotropy of both the elec-
tron-phonon interaction and the Fermi surface
are probable in layer compounds, and it is likely
that the origins of positive curvature are in these
anisotropies.
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Using an exactly soluble model, the decay rate of a current-carrying state of one-di-
mensional fermions is calculated in the presence of random scatterers at finite tempera-
ture and the dc conductivity thereby inferred. For interacting fermions it is modified by
a factor (T/T +6)%, where g is a positive (negative) coupling constant for repulsive (at-
tractive) two-body forces. While the conductivity could be greatly enhanced for g <0 and
T < 6, one-dimensional superconductivity appears ruled out at any finite temperature.

The conductivity o(T) of a gas of interacting
one-dimensional (1D) fermions at finite tempera-
ture has been obtained in the presence of random

scatterers. The main results can be summarized
in the formula
olT) = [T /T +6) o, (1

in which o, is the dc conductivity of a noninteract-

ing Fermi gas (g=0), a quantity which is inverse-

ly proportional to the density of scattering cen-
ters and to the scattering strength of each, and
which is finite at 7 =0 and slowly varying with
temperature. The exponent g characterizes the
strength of the two-body interactions, and is pos-
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itive for repulsive forces and negative for attrac-
tive forces. 6 is a constant related to the range
of the forces, expressed in degrees kelvin.
Equation (1), which is asymptotically exact in
the weak-coupling limit |g|<«1, indicates that
even for weakly repulsive two-body forces the
electrical conductivity vanishes at T'=0, and that,
conversely, for even weakly attractive two-body
forces the conductivity increases without limit
as T -0. These results agree at 7 =0 with my
earlier analysis of the ground-state conductivity*
and are also compatible with an independent study
of Green functions and correlation functions at
finite temperature? in which impurities were not
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explicitly considered. Interest in the topic has
recently intensified as a result of interesting ex-
perimental studies of pseudo-1D structures,
such as tetrathiofulvalinium tetracyanoquinodime-
thane (TTF-TCNQ), by Heeger and co-workers,?
generating some controversy,* but also rekindling
the hope of discovering high-temperature super-
conductivity, perhaps in 1D manifolds. The for-
mula Eq. (1) precludes 1D superconductivity on
purely theoretical grounds but allows for substan-
tial enhancement of the conductivity over that for
noninteracting particles, as seems to be the case
experimentally.?

The basis of the present work is an extension
of Fermi’s “Golden Rule” to finite temperature,

H=Tu, 2 k(= ny) + /L) UD) [0, (D) +p,( D)2

and the current operator is

(6)

The fermion Hamiltonian (5) was originally pro-
posed by Luttinger,’ solved by Lieb and the pres-
ent author,® and is discussed in our book on one-
dimension,” to which the reader is referred for
background information and algebraic details.

In addition, a very useful representation of the
wave operators ¥(x) as exponentials of the densi-
ty-fluctuation operators p(p) was recently dis-
covered, simultaneously and independently, by
Luther and Peschel? and by the present author.!
This representation permits the explicit and ex-
act evaluation of operators such as (4) and ther-
mal averages such as (2), which could not other-
wise be performed for interacting particles.

I briefly summarize the steps leading to Eq.
(1), and conclude this work by comparing it to
calculations® in which the BCS theory? is applied
to the study of the possible superconductivity of

jop:UOE(nlk_ M)

I

(H*(x, 0), H(x", 1))

=C(x’ -x, t)[B™(x, 0)B(x, 0)A"(x, 0)A "X(x, 0), B'(x/, ) B (x", )A T (x", ) A(x", t)],

where

Clx’ —x,t) =L 2explil(kr—Fk,p (x' =x) = vo(kyp+k,t ] } €Xp(= 20)

and!

viz.,
dj/dt = (2v,/m2) [ a5+ 0), H(t)).

In this formula, the angular brackets signify
thermal and configurational averages. H* repre-
sent the forward/backward scattering matrix ele-
ments, chosen to be

H* = [ dx W), () g,00) = [dx WHx)H ),
0= [ dx W), )y, (x) = [dx Wx)H (x),

with W(x) a random traceless scattering poten-
tial. The time dependence of operators is given
by

(2)

H*(x, t)=eiﬂt/ﬁH1(x)e-th/h’ (4)

where the fermion Hamiltonian is given as

()

I

1D electrons.

First, it is most convenient to evaluate traces
such as occur in Eq. (2) in the representation
where H is diagonal. The appropriate unitary
transformation, O - exp(+iS)O exp(-iS), is given
by

S=(2mi/L) %)pp'lw(p)pl(p)pz(— p). (7)

We recall the commutation relations among the
p’sl .6.7:
[oi(p), p;(=p=(=1)'6,,pL/2n (8)

with ¢, j=1 for the right-going, and 2 for the left-
going particles. The correct value of ¢(p) is’

@(p) == % 1n[1 +2xU(p)/mhv,). 9)

Using an earlier calculation!® of H (x,0) we ob-
tain H*(x, 0) by Hermitean conjugation and H (x, t)
by Eg. (4). Thus we have the essential operator
part of Eq. (2):

(10)

(11)

a=(2r/L) 5 p He®P-1)=(21/L) LEp)-p],

>0 $>0

with
E(p)=pl1 +20U(p) /mhvy] 2.

(12)
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The operators in (10) are

Alx, t)=exp{(2n /L) 3 p'p,(= p)e‘**e?® exp[-iE(p)vyt]},

>0

B(x,t) =exp{(21/L) 2] p "'p,(p)e” *e*®exp[-iE(plvyt ]}, (13)

p>0

with Hermitean conjugates obtainable using the identity p,"(p) = p;(-=p). Averaging the exponentiated

Bose- Einstein operators, one obtains for Eq. (2)

dj/dt = 20,/ L2 [ dx [ dR (W*(x)W(x +R)) expli(k s - k, )R]
x " at(- 2) sinfvy(kyp+ky )t 15 (vt +R) S(v,t - R) exp(Q, — Q). (14)

The calculations are greatly simplified if the scattering potential is spatially uncorrelated, i.e.,
(W*(x)W(x +R))=M6(R), where M is a constant. The remaining quantities are

Z(y) =expl(21/L) 2 p'e'?]= T &' (15)
>0 p>0
as previously defined,! and the covergent integrals
Q(R, t)=(4m/L) ? (p7[1 - exp(iv,pt) cospR] - E "} (p){1 - expliE(p)vyt] cospR}), (16)
p>0
(R, 1) =(87/L) 25 E (p)IE(p) {sin?3[ pR +v, E(p)t]sin*3[ pR - v, E(p)t ]}, (17)

>0

with the Bose-Einstein distribution function being ,

f(E) = [exp(v,E/kT) - 1] (18)

To evaluate @, and @,, essentially “Debye-
Waller” factors, analytically we go to the weak-
coupling limit and assume U(p) is slowly varying
up to a cutoff at p =p,, so that U(p)=U(0) for p
<p, and vanishes for p>p,. We then define the
dimensionless coupling constant

g=22U(0)/1hv, (19)

which is now assumed to be small, |gl<1, and

evaluate dj/dt to leading order in g. By our as-
sumptions on the scattering mechanism, we can
set R =0 in the integrals, which then assume the
following asymptotic forms for large ¢:

exp[@,(0, )= (1 +p v, lt]), (20)
exp[- @,(0, t)) = exp[- (ykT |t|/n)], (21)

where y is a number O(1). Study of the integral
in (14) shows that the dominant contributions are
from regions where the complex phases vanish
and for a range of ¢ of the order of #/kT. For
small g, we take the slowly varying factor as
given in (20) out of the integral, Eq. (14), re-
placing it by an order-of-magnitude estimate,
exp[@,(0,#/kT)]. We can set g=0 in the remain-
ing integrals, to leading order. Recognizing the
remainder with g=0 as the decay rate of a cur-
rent of noninteracting fermions, (dj/dt),, one
easily proves that this quantity is proportional
to the current itself, with a constant of propor-
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tionality - 7,7, where 7, is the scattering decay
time for free particles. [The simplest method of
proof involves an independent evaluation of Eq.
(2) using the free-fermion operators suitable for
the case g=1=0.] Thus, we establish that the
current decays exponentially,

dj _ pnvnh>‘<_d_]_'>__ pnvnﬁ>‘ -
dt‘(1+ et J\ae )=\ 1t er )T (22

and obtain the new decay time by inspection.
Identification of p,v,% with 26 and of the ratio of
decay times to the ratio of conductivities com-
pletes the derivation of Eq. (1), constituting the
principal result.

It is evident that if a BCS superconducting, co-
herent ground state is assumed for 1D electrons
with attractive interactions, the fluctuations
would be so large at finite temperature as to de-
stroy the self-consistency of the assumed long-
range order, and restore finite conductivity. As
an example, a free-electron sea interacting with
phonons has been shown to behave as a Peierls
insulator for 1D at low temperature,® rather than
as a superconductor as would be the case® in 3D.
To examine this behavior within the context of
our exactly soluble model, I have calculated the
Cooper-pair amplitude, (¥,(x)¢,(x’)), with the an-
gular brackets indicating the matrix element be-
tween eigenstates of H differing by two particles
in occupation number and thermally averaged.
This quantity can also be obtained as the square
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root of the pair-pair correlation function ob-
tained by Luther and Peschel,? evaluated at infin-
ite separation. Calculating it directly, using the
wave-operator representation of Ref. 1, one
finds that the key to the behavior of this ampli-
tude is dominated by two divergent integrals, de-
noted @, and Q,:

W () ¢,(x ")) < exp(Q;) exp(- Q,), (23)
where
exp(Q,) = exp[(27r/L) >pTia — e 20®))
>0
z(l +LP0) -e/2 (24)

Thus exp(Q,) =0 for repulsive two-body forces,
=1 for g=0, and diverges weakly for attractive
forces. @, contains the temperature dependence.
We have

exp(- Q,) =exp{- (41/L) T p 'flE(p)le >}

550
~ exp(— 2LkT /v ,); (25)

and thus, at any finite temperature, and regard-
less of the sign of magnitude of the two-body
forces, exp(- @,)=0. The vanishing of the Coo-
per-pair amplitude at any finite temperature is
compatible only with a lack of long-range super-
conducting order, and confirms the finite con-
ductivity obtained in Eq. (1). In conclusion, while
attractive forces lead to many-body effects which
can enhance the conductivity of 1D fermions, they
cannot make them superconduct at finite temper-
ature.
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Resonance Absorption of Acoustic Waves by Acceptor Holes
in Ge under Strong Magnetic Field
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The peak structures observed in the magnetoacoustic attenuation in p-Ge are ascribed
to the resonance absorption by acceptor holes, which is caused by the sublevel crossings
due to the second-order Zeeman effect. The anisotropy with respect to the direction of a
magnetic field is explained. The behavior of the magnetothermal conductivity, regarded
as evidence for the Jahn-Teller effect, can also be explained by our model.

The interaction between phonons and acceptor
holes has been investigated by means of thermal
conductivity,"? heat-pulse propagation,** and
acoustic attenuation.*® In p-Si, the results of
these measurements are explained in terms of
the quartet model proposed by Suzuki and Miko-

shiba.” In p-Ge, the heat-pulse propagation can
be explained by this model,* but the observed
magnetothermal conductivity was found to be dif-
ferent, even in a qualitative sense, from what
was expected.® Challis and Halbo proposed that
the discrepancy may be attributed to the neglect
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