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A quantum-electrodynamic theory of spontaneous emission in the presence of a dielec-
tric has been worked out;, and formulas are presented for the change in the lifetime and

the Lamb shift of a two-level atom, as a result of the presence of a dielectric. Curves
are given for the behavior of the damping as a function of the distance of the atom from
the interface. The frequency shift for the case of a conductor is also evaluated.

Over the last few years, a large number of
papers have appeared which deal with the prob-
lem of coherence in spontaneous emission from
a system of many atoms' (Dicke-type superradi-
ance}. Here I discuss another type of coherence
which arises while analyzing the radiation from
an excited atom in the close vicinity of a dielec-
tric. ' I have worked out a complete quantum-
electrodynamic theory of spontaneous emission
in the presence of a dielectric and in this com-
munication summarize some of the results. In
particular, I discuss how the lifetime and the
Lamb shift of the atom change as a result of the
presence of the dielectric. Such changes depend
on the dielectric constant and the distance of the
atom from the interface and should be experimen-
tally observable.

The interaction Hamiltonian between an atom
and the radiation field is given by

a, = —fp(r) ~ E(r)d'y, (I}

where the dipole approximation has been made
and we have ignored the contact term 2~fip„i2d'r.
This term is not considered as we are interested
in distance-dependent effects only. The electric
field is a second-quantized field operator. The
field should now be quantized, not in free space,
but in the space containing the dielectric and the
free space. I assume, for simplicity, that the di-
electric occupies the domain - ~ -z -0 and that
the atom is located at r =a, (a, =a, =0, a, =a).
The quantization of the field has been Carried
out in a beautiful paper by Carniglia and Mandel. '
One would, however, not need to quantize the
field expli|;itly. In this approach I have avoided

the problem of explicit quantization by resorting
to an appropriate response function and the fluc-
tuation-dissipation theorem. '

It has been shown that for a two-level atom,
the damping coefficient y and the shift in the en-
ergy separation of the two levels fI (which would
be referred to as Lamb shift) are given, to the
lowest order in the coupling coefficient, by

y(i, (u) + iQ(i, (u) = j, dT q(i, T)e '"', (2)

where ~ is the energy separation between two
atomic levels and Q is the mean value of the
anticommutatox of the "free field" operators at
two space-time points, i.e.,

q(a, T) =-({d E,(i, T), d E,(a, 0)j).
In (3), d is the dipole-moment matrix element,
and E, is the free-field operator, i.e., it evolves
according to the unperturbed Hamiltonian. I em-
phasize that in deriving (2), I did not make use
of any particular mode expansion of the field
operators. For the case of an atom emitting in
entirely free space, it was also noticed by Bul-
lough and Caudrey' that the Lamb shift can be
computed from the anticommutator of the field
operators at two time points. Note that we are
dealing with an inhomogeneous problem and that
is why Q is a function of a. From (2} it follows
that the Lamb shift 0 is related to the damping

y by the dispersion relation

Q(i, (u) =& 'pf, du), y(a, u),)

x [(~0+~) ' —(~0 —~) 'j (4)

with P standing for the principal part. Therefore,

703



VOLUME 32, NUMBER 13 PHYSICAL REVIEW LETTERS 1 APRIL 1974

y(a, ~) = Im Q„d, d, y, , (a, a,, (u), (8)

where y,.„(a,a, ~) is the response of the electric
field at a point a to an applied (external) polar-
ization at the point a, i.e. , to P,„=P,„5(r—a)
x e '~'. I have thus formulated the problem of
calculating y(a, w) and therefore Q(a, ~) in terms
of the response. The response function appear-
ing in (8) is easily obtained from the solution of
Maxwell's equations with proper account of bound-

once the damping is known, the Lamb shift can
be computed from Eq. (4). Let us now introduce
D(a, T), defined by

D(a 7)-:[d Eo(a, , 7'), d Eo(a, 0)].

We are dealing with spontaneous emission and
hence the fields at t = 0 are in the vacuum state.
The vacuum field can be viewed as a thermal
field at zero temperature; then, by the fluctua-
tion-dissipation theorem, Q and D are related
by4

j(a, u)) = D(i, u)), cu & 0,

= —D(a, (u), ur &0,

where the Fourier transforms are defined by

y(t) = J „(du)/2~)y(~)e (7)

From Eqs. (2)-(7) it fillows that y(a, &u) is given
by

ary conditions. All the equations (2)-(8) are ap-
plicable to any geometrical arrangement. '

I now specialize to the case mentioned earlier,
i.e., when the dielectric occupies the volume
—~ - z - 0 and the atom is located at a. I further
assume that the dipole moment of the atom is
randomly distributed in the x-y plane, and hence
in the subsequent derivation carry out an averag-
ing over the orientation of the dipole moment.
We solve the equations (B standing for the mag-
netic field)

g x g x E —k, '(E+ 4wP, „,) = 0,

vxE= —c 'sB/at,

'7 ~ (E+ 4wPe„, ) = 0,

P,„,= P,„n(r - a), z - 0;

V xP'xE ~o EoE =0, V E =0,

VxE= —c '&8/&t, k, =&a/c, z &0,

subject to the boundary conditions that tangential
components of E and 8 and the normal compo-
nents of ~E and B are continuous across the in-
terface z = 0, to obtain the response function

y, , (a, a, ~) [=—E;(a, ~)/P, ],„. A straightforward
but long calculation shows that

where y
' is equal to the usual expression

-', Id I'u&'/c' and y~'l is given by

y
' (a,, v) = y ReJ~ (»d»/p)e'""[»' —2p» /(fop+ po) —2(p —po)'/(Ep —1)],

with

(12)

The e, which appears in (12) is the dielectric function of the dielectric at the frequency &u. Equation
(12) is our final expression for the damping coefficient. It does not appear possible to do the inte-
grals analytically. I have evaluated (12) numerically as a function of a and the results are given in

Fig. 1, where I have plotted the behavior of y
' for a number of cases. We see that y

' is an oscil-
lating function of a. For small distances y

' increases and hence the lifetime goes down. It is clear
from these curves that there are appreciable changes in the lifetime of the atom at distances much
smaller than a wavelength. It is certainly feasible to deposit atoms at such distances by using the
techniques developed by Drexhage. '

For the case of a perfect conductor, if we take the limit of infinite conductivity, ' then (12) leads to

(y) ~ ~ ~ 3 (p) s1Hx slnx cosx (14)

and then the Lamb shift is found to be

1 1
Q,~(a, ~)=,[1—coax Cix —sinx Six]+ —,—— [sinx Cix —coax Six]

where Si and Ci are the usual sine and cosine integrals. ' Note that for large distances x» 1, Q„~
-x . I have plotted the behavior of y,~ ' in Fig. 1 as function of x. It should be noted that, for
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I-0—

FIG. 1. Curves I, II, and III show, respectively, the behavior of ~ /p as a function of 2~a/c for the cases of
die]ectrics with refractive indices 1.5, 2, and 5 (0.1 on the scale corresponds to 0.5 for the curve IlI). Curves IU
and U represent, respectively, ~3c,)fld /y an«~, ~d /~(~} - ~0) (~) (o)

short distances, y„~ is negative, and hence the lifetime of an atom in the close vicinity of a con-
ductor increases. Such an effect has been observed by Drexhage. ' %e again see from the curve that
there could be appreciable changes in the Lamb shift, which should be experimentally observable
since the effective damping in the case of a conductor is rather small. It should be further noted that
y„~{'~ can also be obtained from the arguments of an image dipole; however, the same argument will
lead to an incorrect value, "

SlKC
(16)

of the Lamb shift. For small distances (16) leads to very large frequency shifts; e.g. , nfl„~&'&y3yo
is equal to 0.57 and —11.28, respectively, according to (15) and (16) for x = 0.5.

For the case when the frequency of the atom coincides with one of the resonant (transverse) frequen-
cies of the dielectric, the damping is again given by (14). The details of this method and the dynamical
aspects (including radiation-reaction fields) of emission in the presence of a dielectric will be dis-
cussed elsewhere. Finally„ I would like to mention that this method can also be generalized to the
case of a radiation field which is not necessarily in the vacuum state.

The author has benefited from several conversations with S. S. Jha and an interesting correspond-
ence with L. Mandel, and would like to thank them. The author is also indebted to B. Shastri for help
in numerical work.

See the articles by G. S. Agarwal, B. Bonifacio, R. K. Bullough, I. R. Senitzky, and K. H. Drexhage, in Coher-
ence and Quantum OPtics, edited by L. Mandel and E. Wolf (Plenum, New York, 1973), pp. 157, 465, 121, 301,
and 187, respectively; N. Rehler and J. H. Eberly, Phys. Rev. A 8, 1735 {1971).

Some aspects of radiation from an atom in the presence of a dielectric have been studied by C. M. Carniglia,
L. Mandel, and K. H. Drexhage, J. Opt. Soc. Amer. 62, 479 {1972), and by Drexhage in Ref. (1).

C. K. Carniglia and L. Mandel, Phys. Rev. D 3, 280 {1971).
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For an account of the fluctuation-dissipation theorem, see, e.g. , P. C. Martin, in Many Body Physics, edited by
C. DeWitt and B. Belian (Gordon and Breach, New York, 1968), p. 37.

H. Bullough and P. J. Caudrey, J. Phys. A: Proc. Phys. Soc., London 4, L41 (1971).
It should be noted that if the two-level atom were treated as a harmonic oscillator, then {2), (4), and {8) should

be replaced by

(a, ~) +in (a, ~)=f0"dTD(a, v)e'

i}()(a,a}=-—a ~f0 decoy( }(a,&uo}[(&so+co} '+ (&u&
—~} ~],

V( '(a, ~) =~;,~P,Xi,(a, a, ~).

{2a)

(4a)

Thus the damping is identical to that for a two-level atom, but the frequency shift is very different. Note further
that (2a), (4a), and {8a) can also be obtained from classical considerations. I would also like to point out that
p(a, u) =p~ )(a, cu) only for the case when initially the field is in a vacuum state.

K. H. Drexhage, Sci. Amer. 222, No. 3, 108 (1970), and to be published.
In quantum electrodynamics a perfect conductor seems to have been used in this sense [cf. H. B. Casimir and

D. Polder, Phys. Bev. 73, 360 (1948)). Strictly speaking, one should include the dispersion of the dielectric func-
tion even for a conductor. At any rate, formulas {14)and (15) are quite instructive and that is why I have presented
them�.

~IIandbook of Mathematical Punctions, edited by M. Abramowitz and I. Stegun (Dover, New York, 1964), p. 231.
H. Morawitz, Phys. Hev. 187, 1792 (1969).
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"Surface sound" has been observed for the first time, in He3 adsorbed on the free sur-
face of liquid He4. Measurements of the surface-sound velocity and surface tension are
used to obtain new values for the effective mass I= (1.3 +0.1)m3 and binding energy eo/
&g=2.28+0.03 K of the adsorbed He .

This Letter reports measurements of the veloc-
ity of surface sound on liquid He4, cooled below
100 mK, and covered with about 0.2 atomic lay-
er of adsorbed Hes. Earlier surface-tension
studies'~ have shown that in such low concentra-
tions the adsorbed He3 can be treated as a two-
dimensional Fermi gas of weakly interacting qua-
siparticles. Surface sound4 is a eompressional,
adiabatic, longitudinal wave in this almost ideal,
two-dimensional system. The measurements al-
low one to check the theory governing the surface-
sound velocity u„and to derive some of the prop-
perties of the adsorbed He' at low number density.
These are the quasiparticle effective mass M,
the binding energy to the surface relative to the
l3ulk &p and the effective interaction between the
quasiparticles. The binding energy ep has been
calculated by a number of theorists~ but no theo-
retical estimates for the effective mass of inter-
action have been published yet. The sign and
magnitude of the interaction is of particular in-
terest because of the possibility of observing two-

dimensional superQuidity in adsorbed He'.
The existence of surface sound was predicted

by Andreev and Kompaneets. 4 In their theory,
because of the existence of surface excitations—quantized capillary waves ("ripplons") and ad-
sorbed He' quasiparticles —the free surface of su-
perfluid helium can transport mass, entropy, mo-
mentum, etc. , and it obeys a set of hydrodynamic
equations which are analogous to the two-Quid
bulk equations, At low temperatures in pure He4,
or in very dilute solutions of Hes in He4, the in-
fluence of the normal Quid in the bulk becomes
negligible compared to that at the surface, and
there are then two forms of small oscillations of
the surface: capillary waves and what Andreev
and Kompaneets called "surface second sound"
(which we abbreviate to "surface sound"). The
surface sound has velocity u, given by

v„u,' = —(Ba/8 lnN, ),

where o is the surface tension, N, = —(Bv/spa)r
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