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Brinkman-Kramers approximation gives sur-
prisingly good agreement with the measured
cross section. In this approximation, the cross
section scales as 2' with projectile atomic num-
ber and hence these results lend credence to the
hypothesis of the importance of electron capture'
in explaining the departure from Z' scaling of
the cross section for vacancy production in heavy-
ion collisions. '
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Spin and antisymmetry have been incorporated into a hyperspherical expansion of the
many-electron wave function. This new expansion increases the range of exact and ap-
proximate results available for atomic systems.

Hyperspherical expansions of wave functions
have been used previously for many-body sys-
tems of spinless, distinguishable particles. '

However, work on N-electron atoms has been
limited both theoretically' and computationally'
to the case of X = 2, for which angular momen-
tum, spin, and antisymmetry are trivial to treat.
I have incorporated these properties into a gen-
eral formulation of the hyperspherical expansion
for arbitrary X,4 and have employed this new
basis to obtain information about exact wave
functions" and to develop new methods of calcu-
lation. These results are summarized in this
Letter.

Hyperspherical expansion of X electron wave-
functions. —'Zhe N electrons in an atom are con-
veniently described by N radii r,. and N pairs of
angles cu,. -=(6, , &y, ). The radii can be obtained
from a hyperradius r and a set of N —1 angles

g,. by the relations

r„=rcos g„,

r„,= r sing„cosy„„

r, = r sinrj„sing„, . . . sing, cosy„

r, = r sinrj„sing„, . . . sing, sin'g2,

where

sin'q, = Q r, '/Q r, ',

Any configuration in the 3N-dimensional space of
the system is thus described by r and the set of
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3N —1 "hyperspherical angles" 0= (n„. . ., rl~, w„
ru„. . ., e„). This definition of the angles is par-
ticularly convenient because the usual spherical
angles of the electrons are retained. The radius
r specifies the overall extent, or size, of the
system while the angles 0 describe a scale-in-
dependent, relative configuration of the system
onto the surface of a 3N-dimensional hypersphere
which we exploit in our approach.

The total Laplacian in these coordinates has
the form

total electronic wave function, we use the Kotani-
Yamanouchi expansion' of a given ' "L state in
the form

f
yL, N~, s& Ms(r a) Q ~

L, MI(r) g s, Ms(a).

the functions 6 of the spin variables o are basis
functions for the spin state. In order to satisfy
the Pauli principle, the spatial functions are re-
quired to transform under electron permutation
P as

f
Pq 1,Jlg Q ~

1,MgU (P)
K

(8)

where A is a generalized angular momentum op-
erator (see Smith' and Delves' ). The operator A'

has a complete set of eigenfunctions called hyper-
spherical harmonics,

A' S„'"&(via) =&,(&, +3% —2}S ' ~( lvn) (5}

All variables are separable in this equation, and
the functions of the ~,. angles are just the usual
spherical harmonics. These have been coupled
into eigenstates of total angular momentum,
since we anticipate their use in the atomic prob-
lem. The eigenfunction of q, is related to a Ja-
cobi polynomial of order y, . The label v stands
for v', the cycle structure of the azimuthal quan-
tum numbers l;, and P=2+, y, . The eigenvalue
A, is p+g, /, . The index p, labels the I func-
tions of given L, M~, T, and P.

These functions provide a basis for a partial-
wave expansion of a spatial function: tl, '™(v

~
n) =g c „„'S„'"~(v

~ n), (10)

where the matrices U(P) are determined by the
spin basis. Because r is invariant under P, the
spatial functions must have a hyperspherical ex-
pansion of the form

y„~ "&(r) =+„6i(v~r)S„""~(v~n),

in which the set of functions tl„'"~(v~ 0), K= 1,
2, . . .,f, transform as in Eq. (8).

We construct such a set of basis functions from
the hyperspherical harmonics. The labels L,
M~, 7, and P of those functions are invariant
under P. Thus, the functions S„'"~(v~0), V, = 1,
2, . . ., g, for a given L, M~, and v form a repre-
sentation (generally reducible) of the permuta-
tion group. If this representation contains the
irreducible representation U(P), we can (by
Schur's lemma') construct linear combinations,

y'"~(r) =Q„Q„R„(v~
r)s„'"~(v

~ n), (8)

having specified L and M~. We say that the S
functions are "normal modes" of behavior of the
hypersphere. Contours of S functions describe
specifically correlated relative motions of the
electrons, and the expansion is a superposition
of these normal modes with scale-dependent ex-
pansion coefficients. Of course, the radial func-
tions themselves also have some dynamical con-
tent.

To incorporate spin and antisymmetry into the

having the desired transformation properties.
By taking functions from each invariant subspace
v (since I. and Mz are constants of motion) we
obtain the expansion in Eq. (9). These new func-
tions 8 are called configurational normaL modes;
they are intrinsic to the N-fermion system in a
given ' "L state and form a basis for describing
its relative configuration Q.

App/ications to X-electron atoms. —The atomic
Hamiltonian has a striking appearance in these
coordinates:

In parenthese»s the "kinetic energy of extension, " which depends explicitly on the number of elec-
trons. The next term is a "kinetic energy of configuration" on the hypersphere. It contains all of the
ordinary angular momenta, in addition to relative radial momenta in terms of the angles q„. The
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electrostatic potential is a homogeneous function of the coordinates of degree —1. Here, the distinc-
tion between extension and configuration is most apparent; the hyperradius factors completely from
the configuration to give the potential r 'W(Q).

Using the expansions in Eqs. (7) and (9), and the Hamiltonian in Eq. (11), we obtain coupled equa-
tions for the N. functions:

2E |it( v i r) = —Q „.W(v i
v') N (v'

i r),dy' +
y yy y' +

p.
(12)

where

W(vi v') =f 'Q„fS,t(vi Q)W(Q)S, (v'i Q)dQ

is the matrix element of the configurational part
of the potential over the unit hypersphere. It is
important that the symmetries of the functions
only require us to do the integrals of r/r, and

r/r», since no other electron-electron repul-
sion is separable in these coordinates. Closed
formulas for W(v~ v') can be derived, but one-
dimensional numerical integration over g is
sometimes more useful.

For a truncation of the expansion over v, we
have studied the resulting finite set of coupled
differential equations, ' and have shown that the
solutions may be expanded around r=0 as

m'{n)
dt(v/ r) = Q Q A„'"'~" ln r, (14

n=k Nt =()

! where k is the smallest A. „ for which &K(vI Q) can
be constructed. The limit m* is less than, or
equal to, the greatest integer in n/2. ' Our re-
sults on k and m~ correct those of Demkov and
Ermolaev' to account for spin and indistinguish-
ability of the electrons. ' The coefficients A„
satisfy a simple, algebraic, triangular recur-
sion in n and m. For fixed n and rn, all coeffi-
cients can be determined, except for the impor-
tant coefficients Az, ~'. These, and the energy,
are fixed by the boundary condition that p vanish
as r goes to infinity.

Certain properties of g may be determined im-
mediately. For example, the ground-state wave
function of 'S helium has the expansion

y)=1 —r+„2n'~'[(X„—1)(z„+5)] 'W(v( v )S(v(Q) + ,'m 'q, r'i—nrS(v, (Q)+O(r')

= 1+(- zr, —zr, + —,'r „)+ —,"Q,r,r, cos 6 ln(r, '+ r, ') + 0(r'),

where

(15)

"g/2 1
q, = —(16Z/~) f, du J, dq(sing]+ cosy) . +I —sln2fj cos6

I —sin2r~ cos 0
sin'q cos'q sinH cos 0.

sin2r~
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j=Q„Q„Q D„'"~e "r" ln rS(v
~
Q).

Also, the "adiabatic" method of Macek can be
used, with diagonalization of the operator (zA'
+ rW) performed in the angular basis. '" Finally,
there are numerical approaches based on recur-
sion" and on integration of coupled differential
and integral equations. "
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Propagation of electromagnetic waves in a large plasma reveals that refraction effects
are much more siginificant than the amplitude swelling commonly predicted from the re-
duction in group velocity. Near electromagnetic wave cutoff, direct conversion into
short-wavelength electron plasma waves is observed. Strong resonant enhancement of
the electric field parallel to the density gradient is measured.

Recently considerable attention has been fo-
cused' on the propagation of electromagnetic
(EM} waves in nonuniform plasmas near the cut-
off region where the incident frequency ~ is close
to the local electron plasma frequency ~~. Near
cutoff the conversion' to large-amplitude electro-
static (ES) electron plasma waves of short wave-
lengths can take place, which can effectively
transfer energy to plasma particles. The basic
understanding of these processes is crucial to
the study of laser-plasma interactions as well as
the large-scale modification of the ionosphere by
EM waves. In this paper, we present experimen-
tal data on such processes obtained in a plasma
whose dimensions are much larger than the free-
space EM wavelength. Measurements of the elec-
tric field reveal approximately a 60 dB enhance-
ment of the ES fields over the evanescent EM
field at regions near the critical density, r ~(s,)

0

The experiment is performed in a space cham-
ber' of approximately 2 m diameter and 4 m
length in which a quiescent, steady-state, mag-
netic-field-free plasma is produced by a dc dis-
charge in argon at 10 ' Torr. The plasma is con-
tained by multimirror confinement with 10 000

permanent magnets at the interior chamber
walls. ' An axial density gradient (1 &n, /I Vn, l

& 10 m) is produced by generating the plasma
preferentially near one end of the device and by
adjusting the mean free path with neutral pres-
sure; radial gradients are avoided by azimuthally
symmetric plasma generation and gas feeds. S-
band microwaves (f =2 000 MHz, A, —= 15 cm) are
launched from antennas' at the low-density end of
the device and propagate in the direction of the
density gradient toward cutoff, ~= co~. In order
to reduce multiple reflection the chamber walls
are partly covered with microwave absorbers
(fine-wire steel wool}. The diagnostics consist
of axially and radially motor-driven probes with
a shielded coaxial magnetic loop for detection of
EM waves [H(r, f)], a coaxially fed short-wire
dipole antenna for detecting electric fields [E(r,
t)j, plane Langmuir probes for determining n, (r)
and k T, , and a nonlinear scattering dipole for
absolute EM field-strength measurements. '

The axial density profile and the typical elec-
tric field pattern of the EM wave are shown in
Figs. 1(a) and 1(b). Effective free-space propa. —

gation measurements in the far-field region have
been achieved by propagating fast-rise, phase-
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