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substances with vanishing shear modulus, i.e., fluids.
For solids the equations are modified by terms involv-
ing Poisson's ratio, which depends generally on the
elastic constants and the external pressure. However,
the effect of this correction on the isotopic mass depen-
dence of the Debye temperature is negligible. I am
grateful to Professor G. A. Stewart for bringing this
correction to my attention.

%'e have assumed that the structures of the He and
He4 films are the same, but changes in e due to struc-
ture differences would not affect the qualitative conclu-
sions. Based on the behavior in 3D, He tends to a

more open structure, i.e., square rather than triangu-
lar. Since Hb~, (He) &eg~&{He) {Ref.S), we would ex-
pect &,q(He ) & 8„~(He ) . Therefore the observed ratios
in the films are minimum values for monolayers having
identical structures.
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Explanation for the Deviations from Matthiessen's Rule for the Low-Temperature
Electrical Resistivity of the Simple Metals

Yaacov Bergman, Moshe Kaveh, and Nathan%iser
Department of Physics, Bar-Ilan University, Ramat-Can, Israel

(Received 22 August 1973)

A new type of trial function is introduced which explains both the large deviations from
Matthiessen's rule observed for the low-temperature electrical resistivity of the poly-
valent metals, as well as the absence of such deviations for the alkali metals. Excellent
quantitative agreement between theory and experiment is obtained for the resistivity of
aluminum, both as a function of temperature and as a function of residual resistivity.

The observed' ' large deviations from Matthies-
sen's rule' (DMR} for the low-temperature elec-
trical resistivity of the polyvalent metals, typi-
fied by aluminum, have recently been the subject
of extensive theoretical investigation. ' " In this
Letter, we show that one can obtain quantitative
agreement with the measured' ' DMR data for Al
by the use of a new type of trial function for the
variational solution" of the Boltzmann equation.
The essential feature of the analysis is the intro-
duction of a trial function that takes explicit ac-
count of the anisotropy of the Fermi surface and
therefore is appropriate to polyvalent metals.

Calculating the electrical resistivity with an im-
proved solution to the Boltzmann equation was
previously proposed by Klemens and Jackson, "
although by a method completely different from
that proposed here. The Klemens- Jackson" cal-
culation for a pure metal was subsequently gener-
alized by Ehrlich" to include impurity scattering,
an important generalization for the calculation of
the DMR. The Ehrlich analysis" contains the as-
sumption that in the absence of umklapp scatter-
ing, Matthiessen's rule would be obeyed. How-
ever, our explicit calculation for Al sho~s that
for the low temperatures considered here, nor-
mal scattering by itself is responsible for a large

part of the observed DMR. This surprising re-
sult stems from the fact that even for normal
scattering, a one-orthogonalized-plane-wave
state vector is inadequate and a two-orthogonal-
ized-plane-wave state vector must be used for
the electron states.

Matthiessen's rule states that ~ is independent
of the residual resistivity p„where bp=p„, -p,
and p„, is the total resistivity. Our calculation
provides an explanation for the following experi-
mental observations regarding ~: (I) At low
temperatures, the DMR for the polyvalent metals
are extremely large. For Al at T=14 K, ~ in-
creases" by a factor of 6 as p, increases from
0.1 to 1000 nQ cm. For lower temperatures, the
effect is much greater. (2) In marked contrast to
the polyvalent metals, the alkali metals exhib-
it"'" very small DMR at all temperatures.
(3) The temperature dependence of dp for Al is
found' to be approximately T' over a significant
range of T in the low-temperature regime.
(4}The impurity dependence of Ep is found" for
Al to be expressible as a universal function of p„
independent of the type of impurity. The univer-
sal function varies approximately as ln(p, }over
a significant range of p, .

Fact (I) can be explained in terms of the new
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trial function even without calculating ~. When-
ever two scattering mechanisms are present,
Matthiessen's rule is valid" only if the same trial
function is appropriate to calculate the contribu-
tion to the resistivity from each of the two scat-
tering mechanisms. We find that at low tempera-
tures the standard" trial function, which is very
good for describing electron-impurity scattering,
overestimates electron-phonon scattering by 1-2
orders of magnitude. This is sufficient to ensure
that there will be large DMR.

Fact (2) can be explained by noting that the new

trial function differs from the standard trial func-
tion only when the Fermi surface is anisotropic.
Since the Fermi surface of the alkali metals is
spherical, both the new and the standard trial
functions are identical. Therefore, for the alka-
lis we predict no DMR at all. This is indeed ob-
served"'" to be the case for high-purity samples
of potassium. The small DMR found"'" for low-
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FIG. 1. Calculated (solid lines) and xaeasured (dashed
lines) values of ~ as a function of T for the two indicat-
ed values of po.

purity samples arise from a different mechanism
and will be the subject of a separate publication.

In Fig. 1, we compare the calculated curves
(solid lines) for the temperature dependence of
~ for Al with the detailed measurements of
Ekin' (dashed lines) for two values of p, (0.40
and 0.86 nQ cm). The agreement between theory
and experiment is evident. Both theory and ex-
periment exhibit nearly a 7' behavior for dp for
both values of p, .

In Fig. 2, we compare the calculated curve
(solid line) for the p, dependence of ~ for Al at
the 6xed temperature of 14'K with the data~
(solid circles) reported by Caplin and Rizzuto"
and by Bass.' Again, there is clear agreement
between theory and experiment. Note that ~ va-
ries almost logarithmically with po over more
than 2 orders of magnitude, as po increases from
about 0.2 to about 50 nQ cm.

We see from Fig. 2 that at 14 K, the "pure"
limit p „„(T), in which Matthiessen's rule is
valid, is not reached until p, is less than 0.1
nG cm. The "dirty" limit begins at about p, ~ 100
nQ cm. Above this value of p„~ is independent
of p, and Matthiessen-rule-like behavior is ob-
served. We may characterize the magnitude of
the DMR by the ratio (p„„„-p~„„)/p~„„. From
Fig. 2, we see that this ratio equals 5 for AL at
14'K.

For lower temperatures, the calculated curves
resemble Fig. 2 qualitatively, but there are two
important quantitative differences. First, the
magnitude of the DMR greatly increases, with

(pd, „~-p~„„)/p~„„reaching 40 at T=4'K. Sec-
ond, there is a shift in the values of po marking
the onset of the pure and dirty limits. At 4'K,
the pure limit is not reached until po =10 ' nQ
cm, whereas the dirty limit is already reached
at p, =1 nQ cm.

Our calculation of bp is based on the variation-
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FIG. 2. Calculated (solid line) and measured (filled circles) values of Dp as a function of p& at the fixed tempera
ture of 14'K. On the upper abscissa are given the calculated values of n and & (in parentheses) as a function of po
at 14'K.
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al formulation, "according to which the total re-
sistivity is given by the expression

[&4IP;., P„I4)]/[&41~&]', (1)

with the exact trial function 4(K) being that func-
tion which minimizes (1). The scattering opera-

tors P
p

and P
p h describe electron-impurity

scattering and electron-phonon scattering, re-
spectively, and X is the electric field term. "
The procedure for reducing the electron-phonon
scattering matrix element &4 lP ~„l 4) to a double
surface integral has been lucidly described by
Ziman, " leading to the expression

&4 lP, „l 4) =g V
-'JJ[dS(R,)/v(R, )][dS(R,)/v(R, )][4

where A is a known" constant; v(K) is the veloci-
ty of the electron in state K; the wave vectors
K, and K, characterize the initial (1) and final (2)
states of the electron being scattered by a phonon
of wave vector q, polarization A., and frequency
~ „(q); and the double surface integral is to be
performed over the true anisotropic Fermi sur-
face of Al." It should be emphasized that both
normal scattering (K, —K, =q} and umklapp scat-
tering (R, -R, =q+6, 6=reciprocal lattice vec-
tor) make significant contributions to &4lP~h l 4)
throughout the lom-temperature regime.

For a polyvalent metal, the temperature-de-
pendent scattering function M-z(K„K„T) must
be calculated using the tmo-plane-wave pseudo
wave functions appropriate to each point K, and

R, . For the low temperatures considered here,
the one-plane-wave approximation to M;~(R„R„.
T) is worst for precisely those values of K, and

K, that dominate the integral (2), and its use
would lead to a significant error in cp for both
normal and umklapp scattering. For example,
for Al at T = 7 K and po = IO nQ cm, the resulting
error in ~ mould exceed a factor of 2. Sham
and Zimanes present the details of the two-plane-
wave calculation of Mq~(R„R„. T). For the effec-
tive electron-ion potential appearing in M~„(R„
R„.T}, we used the Ashcroft model potential. "
Therefore, once one has chosen the trial function
4(K), the calculation of &4lP&hl 4) contains no
free parameters.

The matrix element &4lP; ~l 4) is evaluated in
the same way" as &4lP~„l4), leading to a double-
surface integral analogous to Eq. (2}. For P;
we used a screened Coulomb potential. The
screening function contains a parameter, inde-
pendent of both p, and T, which was chosen to
give the best overall fit of the calculated ~ to
experiment. This is the only adjustable parame-
ter in the calculation of ~.

For electron-impurity scattering, it is justified
to use the standard" trial function

4; (K)=v(K) F,

(K,) —4(K, )]'Q„lM-„(K„R„T}l',

where F is the electric field. However, for elec-
tron-phonon scattering, using (3) for the trial
function and performing the double surface inte-
gral of (2) shows that at low temperatures, for
both umklapp and normal scattering almost the
entire contribution arises from the immediate
vicinity of the intersections of the Fermi surface
with the Brillouin zone boundaries, i.e., the vi-
cinity where the anisotropy of the Fermi surface
is greatest. A trial function which minimizes
these large contributions, (4 lP&h l 4), will consti-
tute a very significant improvement over (3).
Consider the form

4„(K)= [v(K)/vF] "v(k) F,
mhere the Fermi velocity v ~ is included as a nor-
malizing factor so that for the spherical portions
of the Fermi surface, the quantity in brackets
equals unity.

Near the intersection of the Fermi surface with
the Brillouin zone boundaries, the true velocity
v(K) is considerably smaller" than v F. This be-
havior is eharacteristie of all polyvalent metals.
Therefore, by using a high power of n, me elimi-
nate almost entirely the large contribution of
these regions to &4 lPp„l 4). The power n is de-
termined by the requirement that (1) be mini-
mized at each temperature. Therefore, n de-
pends on 1 and is typically 100-200 for pure Al.
Note that the impurity-scattering trial function
(3) corresponds to (4) with n =0. Thus, 4; (K)
=4 (K), implying that &4 IP; pl 40&/(&40I&))'=p, .

We nom turn to the calculation of the DMH by
taking into account both P, z and P&„. For the
trial function, we take a linear combination of
4,(R) and C„(R),

4(K) =- 4,(R)+ a4„(R), (5)

where the value of a is determined" by the re-
quirement that p„, be minimized. For each
value of p, and 1, we calculated the values of n

and n that minimized (1}. In Fig. 2, we present
the calculated values for both n and a as a func-
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tion of p, for 7=14 K. Inserting these values of
n and o. into (4) and (5), combined with the val-
ues" of v(K) for Al, gives explicitly the variation
of the trial function over the anisotropic Fermi
surf ace.

In summary, we have calculated the deviations
from Matthiessen's rule for Al using a new trial
function that takes proper account of the anisot-
ropy of the Fermi surface. Other essential fea-
tures of the calcu]ation are the use of a two-or-
thogonalized-plane-wave function for both normal
and umklapp scattering and the performing of all
surface integrals over the true anisotropic Fermi
surface of Al. Including all these features in the
calculation leads to quantitative agreement with
experiment for ~p for Al, both as a function of
po and as a function of temperature.
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sion for Basic Research.
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