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Cylindrical solitons are seen to evolve from compressive cylindrical pulses in a colli-
sionless plasma. The properties of these solitons are found to be consistent with the
known properties of one- and three-dimensional solitons.

Soliton solutions are now well known for at
least seven distinct one-dimensional wave sys-
tems. ' In particular, the soliton solutions of the
Korteweg-de Vries (KdV) equation have been ex-
tensively studied both theoretically and experi-
mentally during the last decade and KdV is now
known to approximately describe many systems
which include nonlinear and dispersive effects. '
%ashimi and Taniuti' have shown that slightly
nonlinear one-dimensional ion acoustic waves in
collisionless plasmas with cold ions are described
by KdV. In a recent Letter, Maxon and Viecell. i, '
following the procedure of Ref. 2, have derived a
modified KdV equation for spherically symmetric
ingoing waves. In this Letter we present experi-
mental observations of cylindrical solitons in a
collisionless plasma.

One-dimensional solitons have several distin-
guishing characteristics. ' " Among them are
the following: (1) Arbitrary positive (compres-
sive) density perturbations evolve after sufficient
time into a superposition of spatially separated
solitons (solitary pulses). (2) The number and
amplitude of the solitons is determined by the so-
lution of an appropriate time-independent Schro-
dinger equation with a potential well that is pro-
portional to the initial spatial density perturba-
tion. One soliton is formed for each bound state
with soliton amplitude proportional to the energy
eigenvalues. (3) The soliton velocity is given by
[1 + -', (5n/n)] c„where 6n/n is the maximum den-
sity perturbation of each soliton and c, is the ion
acoustic velocity. (4) The spatial widths are pro-
portional to (sn/n) '", which implies that the
product of the square root of the maximum soli-
ton amplitude multiplied by the width is a con-
stant. (5) Solitons retain their identity upon col-

lision with other solitons.
All of these properties have recently been veri-

fied experimentally with collisionless plasmas.
Linear double-plasma (DP) devices were used by
Ikezi, Taylor, and Baker" to verify all but the
second property, and by Hershkowitz, Romesser,
and Montgomery" to verify the connection with
the underlying Schr5dinger equation [property
(2)]. Cohn and MacKenzie" investigated solitons
resulting from very large density perturbations
produced by photoionization. A summary of much
of the experimental evidence has been given by
Ikezi."

In the first work, which considers solitons of
dimensionality greater than one, Maxon and Vie-
celli' have numerically determined that spherical
solitons have the following four properties. First,
an ingoing soliton increases in amplitude while
decreasing in width, thus retaining its identity
as a single soliton. Second, the product of the
square root of the maximum soliton amplitude
multiplied by the width is a constant. Third, a
small residue develops and moves inward behind
the soliton, taking up a measurable percentage
of the total momentum; and fourth, the soliton
velocity is somewhat greater than the velocity of
a corresponding one-dimensional soliton.

In this Letter we present data showing that cyl-
indrical solitonlike objects exist and that their
properties are consistent with those of one- and
three-dimensional solitons. These results are
to our knowledge the first experimental evidence
for solitons of dimensionality greater than 1.

Experiments were carried out using a cylindri-
cal DP device which had previously been used to
study the ion-ion beam instability of cylindrical
beams and background plasma. " Two concentric
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cylindrical plasmas (length 30 cm) are separated
by two closely spaced, fine-mesh, concentric
cylindrical screens with inner screen diameter
equal to 20 cm. The outer screen is negatively
biased to prevent the flow of electrons between
the plasmas, and the inner screen is grounded.
The ion density was approximately 10' cm ' and
the ion and electron temperatures were approxi-
mately 0.2 and 3 eV, respectively. Positive half-
sine-wave pulses are applied to the outer plasma
to launch cylindrical density perturbations in the
inner plasma.

Signals are detected by a positively biased
I.angmuir probe which has variable radial posi-
tion. No azimuthal dependence was observed.
Figure 1(a) shows the perturbed electron number
density as a function of time at several radial
positions for both large and small initial density
perturbations. For the small-amplitude pulse at
~ =9 cm we can identify an ingoing pulse, which
is quite similar to the applied pulse, followed at
a later time by a similar outgoing pulse that has
propagated from the opposite side and through
the center. As the probe is moved closer to the
center the ingoing and outgoing pulses approach
each other, merging at the center. For the large-
amplitude compressive pulse at r =9 cm the ingo-
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FIG. 1. {a) Perturbed electron number density as a
function of time at several radial positions. Upper
traces, linear {&/n & 1%) ion acoustic pulses {with am-
plitude adjusted for comparison). Lower traces, non-
linear pulses propagating, steepening, and breaking in-
to solitons. {The received signals are digitized and
stored on magnetic tape for later analysis. This is the
cause of the observed steplike structure. } {b) Perturbed
electron number density detected at r=0.5 cm labeled
by the applied pulse widths. {c)Received signals at r
= 6 cm labeled by applied pulse width.

ing pulse is seen to be similar to the applied
pulse, but three solitons can be identified in the
outgoing pulse. The traces at other radial posi-
tions indicate how the initial density perturbation
evolves into the solitons. The increased velocity
of the first two solitons compared to the ion
acoustic velocity is evident. Once formed, the
largest soliton is seen to be much narrower than
the applied pulse. %e find that the average veloc-
ity of the largest ingoing soliton is approximately
1.17c,. The application of a negative (rarefac-
tive) density perturbation is not found to evolve
into solitons.

As in the one-dimensional DP device, the maxi-
mum applied voltage is limited by the electron
temperature. " For applied voltages larger than
the electron temperature (here =3 eV), particle
bursts (pseudowaves) are detected. Data were
taken with the largest initial density perturba-
that could be obtained without launching pseudo-
waves. The width of the applied pulse was then
varied to determine how the soliton number de-
pended on the initial density perturbation (see
Fig. 1). This procedure was identical to that fol-
lowed in our earlier measurements (Ref. 13).
Figure 1(b) shows how the signal received, r
=0.5 cm, depends on applied pulse width. 8'iden-
ing the applied pulse results in increased ampli-
tude, decreased width, and increased velocity in
the received signal. In the top trace we see one
well-defined soliton. In the second trace the
first soliton has grown and narrowed and a sec-
ond soliton is apparent. In the third trace the
first two solitons have grown, narrowed, and
speeded up. A third soliton is barely apparent.
%e find that the square root of the maximum am-
plitude multiplied by the width is constant to with-
in 10/q for the first four traces In the. fourth
trace the third soliton is seen to grow as well.
For further increases in width the solitons no
longer have sufficient time to separate from the
initial perturbation. Figure 1(c) shows the sig-
nals corresponding to the same six applied pulse
widths as detected at r =6 cm.

For small applied pulse width it is possible to
launch single solitons whose amplitude depends
on the applied pulse width. The amplitude of an
incoming soliton was found to be approximately
constant over much of its trajectory as a result
of a competition between damping and geometric
growth (see Fig. 1). This simplified the deter-
mination of the amplitude dependence of the ve-
locity. Figure 2 shows the soliton velocities, de-
termined from individual soliton trajectories,
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FIG. 2. Velocity of single solitons as a function of
the maximum soliton amplitude.

tude, width, and velocity are functions of time.
The velocity is somewhat greater than the veloci-
ty of a corresponding one-dimensional soiiton.
Both of these properties of three-dimensional
solitons and the first holds for one-dimensional
solitons as well.

Maxon has recently derived a modified KdV
equation for cylindrical solitons. " Detailed com-
parison with numerical solutions of this equation
will be presented in a later publication. Attempts
will be made to compare the amplitude, width,
and propagation speed as a function of time with
numerical solutions of a modified KdV equation
for cylindrical solitons which includes damping
when such results become available.

We thank S. Maxon for helpful discussions and
Alfred Scheller for construction of much of the
apparatus.

versus soliton amplitude. The best least-squares
tit to these data gives u = [1+a(6n/n)]c„where a
=1.05+ 0.20. This is faster than a corresponding
one-dimensional soliton.

This experiment differs from an idealized one
in at least two respects. First, as in one-dimen-
sional experiments, damping is present. After
accounting for a geometric increase which goes
like (r,/r)'", the ion acoustic pulse is seen to
damp by about a factor of 3 in propagating 9 cm,
and the soliton damps by a factor of 1.5. In the
absence of damping, the geometrical growth fac-
tor (r,/r) should only be expected to hold for lin-
ear ion acoustic pulses. Second, the density per-
turbation is not found to diverge at the center.
We attribute this result in part to broadening of
the received pulse as a result of variations in
the radius of the cylindrical screens of the order
of 0.3 cm and to finite size of the probe and of an
insulating glass cylinder (0.5 cm) which covers
all but the last centimeter of the probe.

We summarize the measured properties of tM o-
dimensional solitons. Compressive density per-
turbations evolve into solitons. The number of
the solitons is determined by the width and ampli-
tude of the applied pulse. Rarefactive perturba-
tions do not evolve into solitons. The solitons
retain their identity after converging (colliding)
at the center. All of these are well-known prop-
erties of one-dimensional solitons. In addition
we find that the soliton width multiplied by the
square root of the maximum soliton amplitude is
approximately constant even though the ampli-
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