
VOr. UMZ 32, NUMSZR 10 PHYSICAL REVIEW LETTERS 11 MARCH 197I

paper of Bef. 4, instead of that of Bef. 2. This does
include column B of the table, and does not include
column C yet.

G. A. Binker, Jr. , and L. Wilets, Phys. Bev. Lett.
31, 1559 (1973). The author thanks Professor H. L.
Anderson for informing him of this paper before it was
published.

8E. H. Wichmann and N. M. Kroll, Phys. Bev. 101,

843 (1956).
~We include l =2 levels for Ba56, because A/r is

small enough. Wave functions for extended-nucleus
Coulomb potential should, in principle, be used, though
here in fact those for pointlike ones are used; it makes
practically no difference for large l .

L. S. Brown, B. N. Cahn, and L. D. McLerran,
Phys. Rev. Lett. 32, 562 (1974) (this issue).
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We have calculated the change in the vacuum polarization for muonic atoms with a high-
Z nucleus arising from the finite extent of its charge distribution. In the calculation, the
electron mass is set equal to zero and only the first term in an expmsion in (nuclear ra-
dius) j(radius of the muonic state) is retained. The calculation is done to all orders in
Zo.' and a simple closed-form result is obtained.

Muonic energy levels in high-Z atoms provide
excellent tests of the validity of quantum electro-
dynamics. Many high-order Feynman diagrams
contribute significantly because they enter with
a factor (Za)" rather than just a". X-ray transi-
tions in muonic atoms are sensitive to such high-
er-order corrections and accordingly have re-
ceived extensive experimental attention. There
appear to be discrepancies between the experi-
mental results and the theoretical predictions. ' '
These theoretical predictions take into account a
variety of effects which perturb the basic energy
levels given by the Dirac equations for a static
pointlike source. ' %e are concerned here with

only one of these effects: the perturbation of the
vacuum polarization around the nucleus due to its
finite extent.

The most interesting x-rays for testing quan-
tum electrodynamics (QED) are those arising
from simple systems where the muon moves in
orbits which are neither too close to the nucleus
(where the Lamb shift and the complications of
nuclear physics would enter) nor too far from the
nucleus (where the screening by electrons be-
comes too important). These constraints are
satisfied by many muonic x-ray transitions, such
as the 5g9~, -4f,~, transition in "'Pb. In this
system, the nuclear radius is about 6 fm, the
muonic orbits have radii of 50-80 fm, and the
first electronic Bohr orbit occurs at about 600
fm. For high angular momentum states, the mu-

on spends very little time inside the nucleus.
Under these conditions, the muon sees a pure

Coulomb potential together with the potential as-
sociated with the vacuum polarization from virtu-
al electron-positron pairs. This vacuum-polari-
zation potential is substantial in high-2 atoms,
contributing about 2000 e V to the 5g,y, -4f,y,
muonic transition in "'Pb. The range of this po-
tential is characterized by the Compton wave-
length of the electron, -400 fm, which is large
compared to the radii (r, „h, ) of the muonic or-
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FIG. 1. (a) A representation of the Uehling potential.
The nucleus is represented by &. (b) A representation
of all vacuum polarization effects of order &(~)", n
=1,3, 5, , .. . If & represents a point source, the po-
tential is the one discussed in Bef. 7. Our calculation
corresponds to the difference between having & repre-
sent a point source and having it represent a nucleus
of finite extent.
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bits, which in turn are much larger than the nuclear radius (5). This justifies our funda, mental approx-
imations: setting the electron mass equal to zero and taking only the first term in an expansion in
5/r„„,. The validity of these approximations can be verified directly for the term of order a(Zo) as
we show below.

The first term in the potential due to vacuum polarization is the Uehling potential. ' lt is represented
diagrammatically in Fig. I. The diagram corresponds formally to a divergent integral. After charge
renormalization there remains a finite eleetrostatie potential. The potential energy of a p in this
field is

oo 4 2
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This result holds for a point source. If the source is of finite extent, we need only integrate this re-
sult over the source distribution. The change in the potential energy due to the finite extent is given
by the expansion4

QZu j 1 j me ~ 4 1
(2)

where (~ ~ ~ ) „„,denotes a mean value taken over
the charge distribution of the nucleus.

The Uehling potential is just the first in a ser-
ies of terms in which the electron loop is attached
by photon propagators 2n+1 times to the nucleus
[see Fig. 1(b) j. The sum of all such diagrams
gives all the terms in the vacuum polarization
potential of order n(Za)'"" (Dia.grams with an
odd number of external photons vanish by Furry's
theorem. )' If the source is pointlike, this poten-
tial is closely related to the electron Green's
function in a Coulomb field. By constructing ex-
plicitly the Coulomb Green's function, Wichmann
and Kroll' were able to represent the vacuum po-
tential around a point source to all orders in Za.

We have calculated the difference between the
full result when the external source has finite ex-
tent and the result when the source is pointlike.
Equivalently, we have calculated the finite-size
correction to the Wichmann-Kroll result. By
setting the mass of the electron equal to zero,
and calculating only the first term in 5/r 8, h, , we
are restricting ourselves to the term analogous
to the first term (proportional to (r') „„,/r) in
Eq. (2). We discuss below the validity of this ap-
proximation.

The details of our calculation are lengthy and
not entirely trivial. We shall publish them in a
longer paper. Here we only sketch the procedure
we have followed. The vacuum-polarization
charge density is given by the electron's Green's
function with common space-time coordinates.
For the point-source case this requires knowl-
edge of the Coulomb Green's function. In our

case, we need the Green's function for a potential
which is Coulomb outside the nucleus, but which
deviates from a Coulomb potential inside the
nucleus. It suffices to know the charge density
outside the nucleus since we know that charge is
conserved and thus the charge inside the nucleus
compensates for the charge induced outside. How
the vacuum-polarization charge density is dis-
tributed inside the nucleus affects the potential
only inside the nucleus. This is inconsequential
for the high angular-momentum states of the mu-
on which concern us. Only the lowest partial
waves of the Green's function are influenced to
leading order by the finite extent of the nucleus.
In this way we have reduced the problem to that
of constructing the lowest partial-wave Green'8
function outside the nucleus. Since the regular
and irregular solutions to the Dirac equation
outside the nucleus (r & 5, where 5 is the joining
radius) must be linear combinations of the solu-
tions to the point-source case, the determination
of this Green's function is possible if the regular
solution is known at the surface of the nucleus.
The procedure is quite analogous to that used in
nonrelativistic quantum mechanics to determine
scattering by a hard sphere.

The equal-time Green's function can be expli-
citly represented in terms of an infinite integral
running along the imaginary energy axis. Because
we have set the mass of the electron to zero, the
integrand is tractable, involving squares of Whit-
taker functions for fixed parameters. The re-
sult is

o.'0 ' R —Zn/(I+X) P4A)l T(A +i Zn)I'
&r r 1 —Za R/(1+ A) y'(2g + 1)' F(2g)'
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where A =[I —(Za.)'] '. Here R is the ratio, 6/P',
of the lower to the upper (small to the large) com-
ponents of the Dirac equation for a regular j = -,'-

solution evaluated for zero energy at the nuclear
surface. Thus R can be determined by a simple
numerical integration of the Dirac equation for
m, =0 and E =0, if the experimental nuclear
charge density is available. In practice we have
found it convenient to use a model for the elec-
trostatic potential of the nucleus: V =A(r'+a')
This potential is joined continuously to a pure
Coulomb potential for r & b. This model is solva-
ble. The potential is compared to the experimen-
tal potential for Pb in Fig. 2.

As a check on our calculation, we have also
computed the ratio A to lowest order in 2a. ,
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FIG. 2. A comparison of the model potential (dashed
].ine), & =~{r +a )

2 (r & b), V~ 1/r (r & 6), with the
potential for Pb derived from its experimental charge
distribution {solid line) (Ref. 9).

R = =-Z n(l —-'(r ) „„,/5 ). (4)

Inserting this into Eq. (3) and expanding out the
lowest order terms, we obtain the result to order
o.(Zo). This is nothing but the finite-size cor-
rection to the Uehling potential and agrees, as it
must, with the first term of Eq. (2).

The energy shift due to the potential in Eq. (3)
may be calculated by evaluating its expectation
value for a Dirac wave function. The results for
various states are shown in Table I. Also shown
are corrections due to finite-size effects for
terms of order o(Za), i.e. , the finite-size cor-
rection to the Uehling potential calculated from
Eq. (2). The qualitative features are as follows:
only for very high values of Zo. (e.g. , Pb) is it
necessary to go beyond the Uehling result; the
corrections due to the finite electron mass and to
higher orders in h/r, „q, are small fractions of
the finite-size correction for the Uehling poten-

tial. This supports the assumptions we have
made in our calculation to all orders in (Za).
Lead furnishes the most interesting case. There,
for the 4f,~, state, we find the energy is lowered
by about 20 eV, while for the 5g,g, state, it is
lowered by about 6 eV. The Uehling piece of the
finite-size correction accounts for 12 and 3 eV,
respectively. Altogether, terms of order n(Zo. )'
and higher in the nuclear-size correction result
in increasing the energy of the x ray associated
with 5g,~, -4f,~, by 5 eV. (Essentially identical
results are obtained for the transition 5g7/p

4f ) )
This result has the same sign but is only one

third the size of that given by the computer cal-
culation of Rinker and filets. ' The discrepancy
between theory and experiment quoted by Rinker
and Wilets for this transition is only slightly re-

TABLE. I. Finite-size corrections to vacuum polarization shifts of atomic energy
levels, in eV.

Order u (Ze)",

m, =0, lowest
01del ln b /r Q~g I

Order {Zo.') only
~,=0, lowest ~, ~0 Higher order

in 0/r B~h, correction in b/r z~h,

40
Ca20 3d5

4f7/2
+ass 3"sf~

4h/2
5A/2

208
Pb82 3d5g2

4fvy2
5&S/2

—0.11
—0.02

—15.9
—2. (

—0.7
—104
—20
-6

—0.10
—0.02
1312

—2.0
—0.5

—83
—12

3

0.02
0.01
0.24
0.14
0.09
0.69
0.38
0.25

0.00
0.00

—0.35
—0.01

0.00
—6.48
—0.15
—0.01
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duced by substituting our result for finite-size
corrections to terms of order o(Zn)' and higher.
Typical results for the energy of the x ray are
E(theor. ) —E(expt. ) = 46 + 18 eV for 5g,~, —4f,~,
and 61+ 21 eV for 5g,y, -4f,g, in ""Pb.

The techniques employed in this calculation,
especially taking the limit ni, = 0, may have a
wider range of applicability in doing higher-or-
der QED calculations in atomic systems. In par-
ticular, certain portions of the Wichmann-Kroll
calculation can be simplified in this manner.

We wish to thank our colleague, Dr. L. Wilets,
for bringing this problem to our attention and for
discussions of the physics of the problem. One
of us (R.N. C.) would like to thank Dr. S. J. Brod-
sky, Dr. P. Mohr, and Dr. E. Wichmann for use-
ful discussions.

Note added. —After this manuscript was com-
pleted, we learned of a recent unpublished calcu-
lation by J. Arafune who computed the o(Zo)'
term analogous to Eq. (3) for a model nucleus

with uniform charge density. His numerical re-
sult for Pb agrees very well with ours. "
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It has been suggested that elementary particles should be associated with the irreduc-
ible representations of the Bondi-Metzner-Sachs group, on the grounds that in these, only
discrete spins appear. We emphasize that the last statement strongly depends on the to-
pology originally chosen for supertranslations, and we discuss in some detail how con-
tinuous spins appear when other equally reasonable topologies are chosen, which depend
in a more explicit way on the smoothness of supertranslations.

The possibility of replacing the Poincare group
with the Bondi-Metzner-Sa, chs group' (herein de-
noted by 8) for the space-time properties of ele-
mentary particles has been considered by some
authors, ' and also in connection with O'Raifear-
taigh's theorem. 8 is the semidirect product of
SL(2, C) times the Abelian group of supertransla-
tions, i.e., an infinite-dimensional real vector
space A of suitable smooth functions f(6, y) on the
sphere S'. The action of SL(2, C) on these func-
tions is such that there exists a connection' be-
tween the elements f of A and the elements y of

the ca.rrier space of the D, , representation of
SL(2, C).'

The idea mentioned above has been advanced
recently in a. clear way by McCarthy' with the
suggestion that an elementa. ry particle should be
associated with a unitary irreducible representa-
tion (UIR) of B. One of the main motivations for
this suggestion stems from the fact that in this
author's noteworthy study of the induced UIR of
8 only compact little groups appear, hence the
only spins allowed are discrete in contrast to the
Poincare case. These results were obtained by


