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M. G. Piepho and G. E. Walker, to be published.
In this case, the (3, 3) resonance width comes out

much too large, however. It seems difficult to fit the
scattering volume, resonance position, and width

simultaneously with a one-term, energy-independent,
separable potential. The Chew-I ow theory, on the
other hand, fits these three quantities very well by vir-
tue of its energy dependence.
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Nuclear finite size correction to the vacuum polarization is examined and applied to
muonic atom spectrum. An analytic expression for the potential due to this correction
is given. 5 increases the present discrepancy by 5 eV in the 5gsp-to-4f&p transition
in lead.
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for r &R, where R is the nuclear radius, about
1.20A'I' fm (A is the mass number).

We comment on this equation: (1) This includes
the lowest order (in Za) correction given by
Blomqvist' and it reduces exactly to the main
part of his, if the higher order terms in (Zo. ) are
neglected and R' is replaced with &(r') in Eq. (1).

The recent precise measurements' of x-ray
spectra of muonic atoms have stimulated re-ex-
amination of theoretical calculations. In spite of
careful checks on such effects as higher order
vacuum polarization, ' ' electron screening, and
electromagnetic excitation of nucleus, ' there still
remains a sizable discrepancy' ' between exper-
imental values and theoretical calculations. The
experimental value is, for example, ' 431 285 + 17
eV for the 5ggi, -to-4f„, transition in '"Pb, while
the theoretical one' is 431 327+ 12 eV, giving a
discrepancy 42+ 20 eV. One effect which has not
been examined in detail so far is the finite nu-
clear size correction' to the higher order vacuum
polarization. We present in this paper an analy-
tic expression for the potential due to this cor-
rection:

5V(r) = — 1 —C, (Zo. )' —C, (Za)' —'n( Z)o, , tR

V(r, ) = —Za/r, for r, ) R.
= —3(Zo )/2R + (Z e )r, '/2R',

for r, &R.

(2)

This corresponds to a charge density which is

(2) We neglect the electron mass, because the
error due to this approximation has turned out
to be O((m, r)') and not O(m, r), thus very small.
(3) We neglect such terms as R'/r' or higher,
because R'/r' is less than —,', for / ~ 3, in muonic
atoms. (It should be noted that we have checked
that our method gives the same coefficient of the
R'/r' term as in Ref. 2, to the lowest order in
Zn. ) This approximation enables us to neglect
those virtual electrons involved in vacuum polar-
ization which have total angular momenta larger
than 2 (we shall discuss it later). (4) We neglect
higher orders in (Za)' for the constants C, and
C„but we do not neglect the higher orders for
the power of the exponent of (R'/r')" ' ' l be-
cause (R'/r') ' is very large. (5) We restrict
ourselves to the vacuum polarization at the out-
side of the nucleus, because the inside is not im-
portant to the muonic states with high angular
momenta, say, l-3.

Now let us sketch how to obtain this result. We
follow Wichmann and Kroll's' method, where the
vacuum polarization due to virtual electrons is
expressed in terms of a. contour integral (over
complex electron energy plane) of Dirac wave
functions with arbitrary energy eigenvalues. The
difference between their calculation and ours is
only in the form of the nuclear Coulomb potential.
We take
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constant inside the nuclear radius R and zero
outside. We believe that the present calculation
is insensitive to this approximation. In general
there are two independent solutions to the Dirac
equation with energy F-, total angular momentum

j, and fixed parity. We take for these solutions
v ', which is regular at r, = 0, and v, which
is regular at r, =~. Let zv

' and m ' be the cor-
responding solutions for pointlike-nucleus poten-
tial (or R =0). Obviously we can set

v~' (r, , E) =lv~"(r, ,E)+ri(E)lv"'(r, , E),
v~'~(r. , E) =~~'&(r. , E),

(3)

for r, &R, with ri(E) being constant.
In order to obtain lI(E), we solve v '~(r, , E) for

r, &R and use the continuity of the spinor wave
function at r, =R. Using the spinor wave func-
tions for M)

' and u ' given in Ref. 7, we find
that lv'"(R, E) has a singular factor R ' relative
to (g) (l)(R E) for R (1 [S [(j + )2 (g(y)2 )1/2]

This fact leads to

l) = 0(R"), for R - 0. (4)

Substituting Eq. (3) into Wichmann and Kroll's
formula, we get the vacuum polarization. The
first term of v~'1 in Eq. (3) gives the pointlike-
nucleus result, and the second term gives the
finite nuclear size correction. The correction
is, therefore, proportional to q(E) and thus to
R for R-0. This is why we need electron wave
functions only for j = &. (We have used j = 2 as
well in getting the R"/r' term to the lowest order
in order to check the validity of our method and
have got the same answer as Ref. 2. ) At this
stage we easily find that the error due to the fin-
iteness of electron mass starts with rn, ' and not

m, . So it is safe to put m, =0. Finally we get
the expression (1). The energy shifts to several
muonic atom levels are given in Table I.'

We see that the higher order correction has
the sign to increase the present discrepancy, ' '
and contributes by pretty small amounts to the
energy differences though each shift itself is
large. The discrepancy mentioned in the second
paragraph is now increased to 47+ 20 eV.

The author is very grateful to Professor Y.
Nambu for bringing this problem to the author' s
attention, giving him very kind comments and
useful references, and reading the manuscript.
He is also thankful to Professor H. L. Anderson
for interesting discussions.

After this calculation was performed, we re-
ceived a report of Rinker and Wilets, ' who show

TABLE I. Finite-size correction to muonic atoms.
The expectation value of Eq. {1)is given in column A.
This includes column B, the correction to the lowest
order (Uehling) potential. The higher order correction
is given in column C.

Atom Level

(A)
Zo. + (Zo.)8+. ~ ~

(eV)

(B)
ZQ

{eV)

(G)
(A) -(B)

(eV)

Ba"

Pb82

3"5/2

4'/2
4fv/2

5gs/2

4'/2
4f7/2

5gs/2
5gv/2 4'/2
5g9/2-4f~/2

—15.9
—15.2

2.6
2.6
0.7
0.7

—20.3
—19.8

5.8
5 ' 7

14.5
18.6

—13.6
—12.9

2,0
1.9
0.5
0.5

—12.7
—11.7

2.9
2.8
9.8
8.9
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—0.7
—0.7
—0.2
—0.2
—7.6
—7.6
—2.9
—2.9

4.7

4.7

that the relevant correction is very large. Since
they have adopted a quite different technical ap-
proach, making full use of computer and sub-
tracting gauge-dependent terms and renormaliza-
tion term by computer, the present author is not
able to check their result, or to explain the dis-
crepancy between the two, at present. Further
examination of this problem is desirable.

Note added. —After submitting this article for
publication, we received a report by Lowell S.
Brown, Robert N. Cahn, and Larry D. McLerran;
with a similar analytic calculation they indepen-
dently obtained the relevant corrections in a very
good agreement with ours. " We thank them for
the correspondence.
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6Here we have modified the estimation of Ref. 2,
adopting the electron screening calculation of the first
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paper of Bef. 4, instead of that of Bef. 2. This does
include column B of the table, and does not include
column C yet.

G. A. Binker, Jr. , and L. Wilets, Phys. Bev. Lett.
31, 1559 (1973). The author thanks Professor H. L.
Anderson for informing him of this paper before it was
published.

8E. H. Wichmann and N. M. Kroll, Phys. Bev. 101,

843 (1956).
~We include l =2 levels for Ba56, because A/r is

small enough. Wave functions for extended-nucleus
Coulomb potential should, in principle, be used, though
here in fact those for pointlike ones are used; it makes
practically no difference for large l .

L. S. Brown, B. N. Cahn, and L. D. McLerran,
Phys. Rev. Lett. 32, 562 (1974) (this issue).
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We have calculated the change in the vacuum polarization for muonic atoms with a high-
Z nucleus arising from the finite extent of its charge distribution. In the calculation, the
electron mass is set equal to zero and only the first term in an expmsion in (nuclear ra-
dius) j(radius of the muonic state) is retained. The calculation is done to all orders in
Zo.' and a simple closed-form result is obtained.

Muonic energy levels in high-Z atoms provide
excellent tests of the validity of quantum electro-
dynamics. Many high-order Feynman diagrams
contribute significantly because they enter with
a factor (Za)" rather than just a". X-ray transi-
tions in muonic atoms are sensitive to such high-
er-order corrections and accordingly have re-
ceived extensive experimental attention. There
appear to be discrepancies between the experi-
mental results and the theoretical predictions. ' '
These theoretical predictions take into account a
variety of effects which perturb the basic energy
levels given by the Dirac equations for a static
pointlike source. ' %e are concerned here with

only one of these effects: the perturbation of the
vacuum polarization around the nucleus due to its
finite extent.

The most interesting x-rays for testing quan-
tum electrodynamics (QED) are those arising
from simple systems where the muon moves in
orbits which are neither too close to the nucleus
(where the Lamb shift and the complications of
nuclear physics would enter) nor too far from the
nucleus (where the screening by electrons be-
comes too important). These constraints are
satisfied by many muonic x-ray transitions, such
as the 5g9~, -4f,~, transition in "'Pb. In this
system, the nuclear radius is about 6 fm, the
muonic orbits have radii of 50-80 fm, and the
first electronic Bohr orbit occurs at about 600
fm. For high angular momentum states, the mu-

on spends very little time inside the nucleus.
Under these conditions, the muon sees a pure

Coulomb potential together with the potential as-
sociated with the vacuum polarization from virtu-
al electron-positron pairs. This vacuum-polari-
zation potential is substantial in high-2 atoms,
contributing about 2000 e V to the 5g,y, -4f,y,
muonic transition in "'Pb. The range of this po-
tential is characterized by the Compton wave-
length of the electron, -400 fm, which is large
compared to the radii (r, „h, ) of the muonic or-

2

@=1,3, 5...

FIG. 1. (a) A representation of the Uehling potential.
The nucleus is represented by &. (b) A representation
of all vacuum polarization effects of order &(~)", n
=1,3, 5, , .. . If & represents a point source, the po-
tential is the one discussed in Bef. 7. Our calculation
corresponds to the difference between having & repre-
sent a point source and having it represent a nucleus
of finite extent.


