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Partition Function for a Two-Dimensional Plasma in the Random-Phase Approximation*
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The partition function for a two-dimensional plasma is evaluated within the random-
phase approximation. The periodic boundary conditions are taken fully into account by
including the periodic image interactions. In the guiding-center limit, the "negative tem-
perature" threshold energy is evaluated, and a value different from previous calculations
results. When an identical random-phase evaluation is applied to the finite-gyroradius
plasma, the Salzberg-Prager-May equation of state is recovered.

Considerable interest has arisen lately in the
equilibrium statistical mechanics of two-dimen-
sional plasmas, both in the "guiding center" and
finite-gyroradius limits. ' The "guiding center"
model is particularly interesting because its to-
tal phase volume is finite, so that above a criti-
cal energy 8, the temperature is formally nega-
tive. ' Here I evaluate the partition function for
both systems within the random-phase approxi-
mation, and so arrive at the threshold energy 8 .

In the random-phase approximation, periodic
boundary conditions are implicit, which means
that in calculating the total energy one must in-
clude the interactions of all the charges with the
images of all the others. Until now this fact has
not been appreciated. I use the two-body noncen-
tral Ewald potential to calculate the energy of
the system, which includes the image interac-
tions and leads to a volume dependent term. For
the finite-gyroradius case, the Salzberg-Prager-
May equation of state is recovered, and for the
guiding-center model a new value of 8 results.

I proceed from the canonical ensemble, which
apparently has not been done directly for the

guiding-center model. (For energies near S
the usual steepest-descent evaluation of the par-
tition function may not be assumed to imply the
equivalence of the canonical and microcanonical
ensembles. ) All of my evaluations of thermody-
namic quantities derive explicitly from the parti-
tion function.

The total energy for X positive and X negative
charges in a box of volume V may be written as

2N

b = Qp /2m;+Qy(x;, )+8,.

80 is a constant which will be specified below.
&!(x;,) is the Ewald potential which includes the
periodic images:

g(x;, ) = (47Te;e, /LV)Q „'k 'exp-(ik x;,).

k= 2mn/V'"; n is a vector with integer compo-
nents; V is the volume of the system; and the
prime on the summation means to omit k= 0.
The ith charge is a very long rod of length I and
charge e, . Following Brush, Shlin, and Teller"

1

and Nijboer and DeWette, " one may put P(x;, ) in-
to a form convenient for numerical evaluation,

g((;,) = (e;e, /l)[E, (v E;,') —1++-„'[exp(- mn'+2min &;,)/r)&P +E, (mIn —F„,I')]j,

where j;, =x;, !V'", and E,(x) is the exponential integral. The constant bo=Nlim„, [g(x/V'") —cp(x) J,
where y(x) = —(2e'!1)in@ is the two-body Coulomb interaction. The numerical value of So turns out to
be ho= —2.62(Ne'/1) + (Xe'!1)lnV.

The partition function for the finite-gyroradius case is

where ~ = /"p, T is the temperature in energy units. The momentum-space part is trivial, and the con-
figuration-space part becomes

tc j

Following Taylor, let us invoke the random-phase approximation to convert the integral over the ('s
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to one over density variables

r»' =Q (e; e, /P V') exp[ik ~ (x; —x, ) j,

with corresponding Jacobian

J= g' (V'f'!2Ne'') exp[ —(V'1 '/2N. e')r k'] .
k

This gives

Z, „„., =j g'(V'p/2Ne') exp[- (V'P/2Ne')rq' —(h, + 2»Vr»'/k')/8+ 4&Ne'/&HVk'] dr»'.

The integrations over r],' are easily done and give

Z„„„., = U'(1 + k o'!u') ' exp(k o'/k' —g, /8),

where ko'—= 4mNe'/lVH, which may be represented as an integral over k, to give (m, are the masses of
the rods)

P (2' 8) (2am 9) ~h Ne
(1

Ne

) (1
Ne

) (3)

The various thermodynamic functions may be computed from Eq. (3). The pressure is I' = —8&(lnZ)/
9 V=2(N/V)8(l —e'/2lH), which is the Salzberg-Prager-May equation of state. " The internal energy
is (8) = 8' & (lnZ) /& 8 = 2NH + So —(Ne'/l) ln(l +Ne'/lH) The e. nt ropy is

S = k»[8 & (lnZ)/& 8+ lnZ] = 2Nk»(in[2m(m+m )'"HV/k'N] + 2}+k»[ln(1 +Ne'/lH) Ne'!-18] .
Note that the k integral in Eq. (3) has been cut off at the shortest wave number in the system, which
also should have been done in the ring sum of Hauge and Hemmer. ' Also note the combination of the
logarithms gives an extensive thermodynamic limit for large X and V, when B &O.

Results for the "guiding center" model may be obtained by ignoring the momentum-space contribu-
tion to Z. Thus we find for the energy and entropy

(S)~, = So —(Ne'/f) 1n(1+Ne'/lH),

S„, = k»[ln(1 Ne+/lH) —¹'/18].
We may eliminate B in favor of energy to obtain

S„=k,fl —((g)g, —8,)(Ne'/l) ' -exp[-((h)q,
The temperature is given by T ' =&S/&($)z, .
Equations (4)-(6) hold for H=k&T &0. Therefore,
the threshold value of (8)&, may be obtained by
letting &-+~, and gives the threshold energy

8 = g, = —2.62(Ne'/1)+(Ne'/l) lnN,

which differs from previous results. "
Previous evaluations of 8 have assumed an

equivalence between the sgm of the pairwise po-
tentials and f E d x/Bv —fE„»- d3x/Bm, where E
is the electric field expressed as a Fourier se-
ries, and fE„,q'd'x/Bm is the infinite Coulomb
self-energy of the charges. The Fourier repre-
sentation of the E, however, assumes periodic
boundary conditions. Therefore, the two ener-
gies are equal only if the image charges are in-

(4)

(5)

g )(Np /f) ] (6)

eluded in the sums of the pairwise interactions.
The expression in Eq. (7) can be interpreted as
the sum of the energies of the interaction of each
of the charges with its own images. " Thus the
threshold distribution is still the random distri-
bution, as previously determined. A different
conclusion was reached in Ref. (6).

The author wishes to thank D. Montgomery for
suggesting this problem.
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Space- and time-resolved interferometric measurements of electron density in a CO, —

laser-produced plasma in helium show the development and evolution of radial profiles
with on-axis minima, resulting in self-focusing of the laser beam.

The advent of high-power, long-wavelength CO,
lasers has led to the possibility of achieving con-
trolled thermonuclear fusion by laser heating of
magnetically confined plasmas with densities
near but below the critical density corresponding
to the laser wavelength. ' One of the fundamental
requirements of this reactor scheme is the ability
of the plasma to contain the laser beam in a long,
thin, linear plasma column. For such contain-
ment, plasma refractive properties require that,
transverse to the beam axis, the plasma density
profile must have an on-axis minimum. %e re-
port in the present work measurements of the
evolution of the electron-density profile in a la-
ser-produced plasma in the absence of a magnet-
ic field, demonstrating that electron-density pro-
files favorable for beam containment can be cre-
ated by the action of the laser beam itself. In ad-
dition, beam self-focusing accompanying such
favorable density profiles is observed to occur.

The plasma was produced at the focal spot of
a TEA (transverse-excitation atmospheric) CO,
laser with unstable resonator optics in a 5-m
confocal cavity, which gives an annular output
beam with 5-cm i.d. and 10-cm o.d. , pulse ener-
gy up to -30 J, pulse half-power width -150 nsec,
and beam divergence less than 1 mrad. The beam
is focused by a KCl lens of 45 cm focal length.
The radial intensity distribution at the focal plane
is roughly Gaussian, with a measured focal-spot

diameter of less than 1 mm, approximately equal
to that expected from spherical aberration. The
experiments were performed in helium gas at an
initial pressure of 30 Torr, which would produce
an electron density 2X10" cm ' for complete
double ionization, corresponding to -', the critical
density for the 10.6-pm incident CO, beam.

Typical plasma luminous images are shown in
Fig. 1(a) by the three successive framing pic-
tures, beginning at approximately 10 nsec after
gas breakdown with 50 nsec delay between frames.
(The incident beam propagates from left to right. )

After breakdown the plasma size increases. At
a given time, it is approximately cylindrical in
shape with a bright shell, and its length along
the beam is several times its diameter.

The electron-density measurements were made
with a modified Mach-Zehnder interferometer
with an internal focus, shown schematically in
Fig. 1(b). The beam from a He-Ne laser is fo-
cused in the plasma by a lens outside the inter-
ferometer, and the recombined beam is moni-
tored with a photomultiplier. One fringe shift
corresponds to 3.5X10" electrons/cm'. When
the interferometer is adjusted for uniform inten-
sity across the recombined beam, a linear change
of optical path in one arm of the interferometer
gives a sinusoidal signal on the photomultiplier.
The plasma can be scanned on a shot-to-shot ba-
sis by moving either the interferometer lens or
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