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The customary use of the usual Foldy-Wouthuysen
transformation is to obtain the Pauli Hamiltonian,
which automatically leads to a wrong sign for a, .

A consequence of working with one-particle theory
rather than quantum field theory is the necessity to in-
sert a sign operator P in front of the charge interaction
Hamiltonian generated by the F-W transformation. See
J.J. Sakurai, Advanced quantum Mechanics (Addison-
Wesley, Reading, Mass. , 1967), p. 137; or Tani, Ref. 4.
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We propose a new class of apparently renormalizable heavy-vector-boson theories.
These models are spontaneously broken gauge theories, modifed by the addition of ar-
bitrary mass terms for vectors associated with invariant Abelian subgroups. The vac-
uum is not invariant under these subgroups. Such theories are probably renormalizable
since their multiparticle &-matrix elements are unitarily bounded in the tree approxima-
tion. As illustrations, the Higgs IU(1)] and Weinberg gauge theories are modified in this
way,

The only known renormalizable systems of
heavy vector bosons are either spontaneously
broken gauge theories (SBGT) or "conserved cur-
rent" models. In an SBGT' the field variables
ean always be chosen so that the Lagrangian is
locally gauge invariant. In the language of these
field variables spontaneous symmetry breaking
is the origin of the vector-boson masses. Mass-
less vector mesons have conserved source cur-
rents. On the other hand, "conserved current"
models always contain at least one massive vec-
tor boson, whose source current is conserved.
Massive quantum electrodynamics is the simplest
system of this type. The general prescription for
constructing conserved current models can be
stated as follows: (1) Begin with a Lagrangian
which is invariant under a nonsemisimple group
of local gauge transformations (i.e. , a, group of
transformations containing an invariant Abelian
subgroup). (2) Arrange for spontaneous symme-
try breaking (if any) such that the vacuum expec-
tation value of the scalar field is invariant under
at least one invariant (single-parameter) Abelian
subgroup (thus, at this stage the corresponding
Abelian vector is massless and coupled to a con-
served current). (3) Add (in the R gauge) an ar-
bitrary mass term for the same Abelian vector.
Notice that the resulting Lagrangian is not local-
ly invariant under Abelian gauge transformations.

This paper suggests that there is a third class
of heavy-vector-boson interactions which may
be renormalizable. ' The models of this new class
are constructed according to the above three-part
prescription, ' except that in step (2) spontaneous
symmetry breaking is arranged so that the vac-
uum expectation value of the scalar field is not
invariant under at least one invariant (single-pa-
rameter) Abelian subgroup [thus, the correspond-
ing Abelian vector, possibly in linear combina-
tion with other vectors, would acquire a mass at
step (2)]. Models of this type are different from
SBGT systems, since the R-gauge Lagrangian is
not locally gauge invariant under the entire group;
they differ from conserved-current theories since,
in general, there is no massive vector boson with
a conserved source current. Instead, these mod-
els are "hybrid" systems which interpolate be-
tween the SBGT and conserved-current theories:
In the limit in which the added Abelian vector
mass term vanishes, an SBGT is recovered; on
the other hand, as the scalar-field vacuum ex-
pectation value is altered so that it becomes in-
variant under the Abelian subgroup in question,
the "hybrid" model becomes a conserved-current
theory. The "hybrid" theories are probably re-
normalizable since we can show that they are
"tree unitary" (i.e. , unitarily bounded in the tree
approximation). Specifically, because coupling-
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constant relations force the cancelation of bad
high-energy behavior, the Al-particle S-matrix
elements diverge no more rapidly than E in
the high-energy limit (i.e. , in the limit in which
all angles are fixed and the overall energy scale
E increases to infinity). In the following these

features are illustrated by constructing hybrid
versions of the Higgs' [U(1)] and Weinberg' [SU(2)
@U(l)] SBGT's. In both cases the final particle
spectrum contains only massive vector bosons.

Consider the fol'lowing Lagrangian, constructed
from a real vector field A„and a two-dimension-
al array of real scalar fields II:

g = —,'(a„W, —a,X„)'+—,'M, 'X„'+ -,'(a„ll+ igA„DII)' -h(II' —f)'.
Here, D is a two-dimensional, imaginary, antisymmetric matrix with D = 1. We take A & 0 in order to
guarantee stability and f =—X'&0 in order to have (II),w 0. If M, were zero, Eq. (1) would describe the
usual Higgs U(l) SBGT; however, we are interested in studying the "hybrid" case, M, &0. Notice that
the Lagrangian is not locally gauge invariant; but it is invariant under the global U(l) transformations,
II-e'~ II, where A is a real constant. Since (II),e0, this symmetry is spontaneously broken. It is
convenient to define a set of new real field variables, y„y„and W„:

ig'A y,D h. + rp, gh.

(M /M)

where M=—(M,'+g'h. 2)'~'. In terms of these field variables, the Lagrangian is

g = —~(aq W, —a, Wp)2+ 2M2Wq'+ ~(aqua, )2+ 2(aqua, )'+g'AWq2y, + (gMO/M)Wq (y2a" (p, —(p, a"y, )

+ 2g Wq [(Mo /M )(p, '+ (p, '] —h[2Ap2+ (Mo'/M')y, '+ y, ] . (2)

Since the change of variables is "canonical, " the Lagrangians in Eqs. (1) and (2) have identical S ma-
trices. '

Notice that in terms of either set of field variables there are three massive vector modes and two
scalar modes; the field A„was massive from the beginning and was not able to "soak up" a scalar
mode. The most important feature of this model is that al1. S-matrix elements in the tree approxima-
tion are unitarily bounded at high energy. This type of gentle high-energy behavior suggests that the
theory is renormalizable. The Lagrangian also has interesting symmetry properties. It is invariant
under global transformations which have the infinitesimal form

ay, = (X+@,), 5y, = "y„5W„=,a„p„gAM —gAM „g'A.A

where A is an infinitesimal constant. The corresponding conserved Noether's current, 4&, is

a" (p, — "y,W" + (y, +x) a~(p, + "y,W~ —,a, y, (a"W" —a"W").-gM„ gM„ gM gM„ g A.

0 0

The associated symmetry is realized dynamically, since Z„couples to the massless (Goldstone) boson
Note that this conserved current is not the source current of @"„.

The above hybrid model smoothly connects the Higgs U(l) SBGT and a conserved-current theory
(massive-photon scalar electrodynamics). We have already observed that the original Lagrangian in
Eq. (1) becomes the R-gauge Higgs model as M, -O with A c0. It is easy to check that in the same lim-
it Eq. (2) describes the U-gauge Higgs Lagrangian. As M, —0, the Goldstone boson field y, becomes
free, leaving an interacting (Higgs) theory of one massive vector and one scalar In the .same limit the
conserved current 4" is ill defined; this is expected since the Higgs model has no conserved current.
As A —0 with M, c 0, the original Lagrangian of Eq. (1) becomes the "electrodynamics" of massive
"photons" and massless scalars. The Lagrangian of Eq. (2) reaches the same limit. In this limit, the
massless scalar q, remains coupled to other fields, but it decouples from 4„. Therefore, 4„changes
into a conserved current which is associated with an algebraic symmetry of the S matrix. In fact, J&
becomes the "electromagnetic" current which is the source current of the massive "photon. "

As another example, consider the Lagrangian constructed from four real vector fields A,„and a two-
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dimensional array of complex scalar fields II:

Here, the structure constants d„, are zero when any index is 4 and are otherwise equal to —g&,~,. As
before, we take» &0 to assure stability and f =X' &0 in order to have (II),w 0. If M, were zero, Eq. (4)
would describe the Weinberg SU(2)]3 U(1) SBGT with no fermions; instead, we study the hybrid case,
AI p & 0 Notice that 2 is invariant under the global gauge t ransform ations,

11 —exp(- g 1g 7' ~ A+ p 7g A&)II, A,„-[exp(- &A, f,)1,],&],„,
where (f,)„=id—„,and A, are four real constants. Since (II),c 0, this symmetry is spontaneously bro-
ken down to the U(1) subgroup which leaves (II)~ invariant. In order to simplify calculations we adopt
the following notation: First, choose (II),= (,'). Then, the mass matrix, which characterizes the qua-
dratic vector field terms in I, is M„'.

2 2 2 l 2
11 ™22™33

all other M„=O. This matrix can be diagonalized by an orthogonal matrix R which is a rotation in the
"3-4 plane": (R 'M'R)„=M, '6„. The eigenvalues M, ' must be greater than zero and satisfy the trace
and determinant conditions

2~ 2 &g2) 2~ 2

We can always solve these equations for R„and M, ' as functions of g, g', X, and M, ; however, the
main features of this model can be understood without doing this. The next step is to define a new set
of real field variables, p, 9,. (i =1, 2, 3), and W,„:

ll-=exp]light lf]( ), R.„IV„,-=]e "''].,A,„—[]1 —e "'']/il T]., a, e,

In terms of these variables the Lagrangian is

+ pA W, ~W~" (2 p]]+p)(M, 5,],
—MOR~, R,], ) —»(2hp+p ),

where C,„,-=d, , , R, ,R, ,R, , Once again,
since the change of variables is "canonical, " the
Lagrangians in Eqs. (4) and (6) have identical S
matrices. ' In terms of the old variables, A, &

and
lI, there were three "massless" vector fields,
one massive vector field, and four real scalar
fields. In terms of the new variables there are
four massive vector fields and one massive sca-
lar; the three 9; fields became longitudinal modes
of vectors and do not appear in Eq. (6).

As before, all X-particle scattering amplitudes
in this model are unitarily bounded in the tree
approximation. ' This supports our conjecture
that the model is renormalizable. Even though
all the vector bosons are massive the Lagrangian
has a residual symmetry; it is invariant under
+ (yy '2) p

e" &&„,»„. The corresponding con-
served Noether's current 4„generates an alge-
braic symmetry of the S matrix. However, it is
not the source current of any single massive vec-
tor field; instead, W» and &4„couple to linear
combinations of Z" and another (nonconserved)
current. Note that the model has no massless

i vector bosons but has a conserved charge which
is carried by two of the massive vectors and
their currents.

If M, =O and A. WO, the original Lagrangian de-
scribes the Weinberg SU(2)]S]U(l) SBGT (with no
fermions) in the R gauge. Similarly, as M, -O,
the Lagrangian in Eq. (6) becomes the Weinberg
model in the U gauge. Equation (5) shows that
one vector boson becomes a massless photon in
that limit. It can be demonstrated from the equa-
tions of motion that the corresponding vector
field becomes coupled only to 4", which is the
electromagnetic current of Weinberg's model.

These hybrid theories were not discovered by
accident. We are now completing a systematic
search for tree-unitary systems of heavy vector
mesons, ' which are described by a Lagrangian of
mass dimension less than or equal to 4. At the
end of that search the hybrid, SBGT, and con-
served current models appear as the only tree-
unitary theories. ' A dimensional argument makes
it plausible that any renormalizable theory has to
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be tree unitary. Our result then indicates strong-
ly that the above three types of models represent
the only renormalizable heavy-vector-boson the-
ories.

If the hybrid models are truly renormalizable,
there are several possibilities to be explored:
(I) "Hybridization" might be a useful way of reg-
ulating the infrared behavior of massless vectors
in ordinary SBGT's. For instance, in the usual
VVeinberg model the photon can be given a mass
according to the hybrid prescription without de-
stroying renormalizability. (2) Are the hybrid
theories asymptotically free" and thereby suit-
able for describing the strong interactions?
(3) So far, we have discussed these models in
the tree approximation; the one-loop solutions
might be qualitatively different. For example,
consider the system in Eq. (I) at the point f= 0,
Af p & 0. The tree -approximation solution de-
scribes the "electrodynamics" of a massive "pho-
ton" and two massless scalars. An analogy with
the work of Coleman and %einberg" suggests the
existence of one-loop solutions at the same point,
which resemble hybrid models with one massive
vector, one massive scalar, and one massless
(Goldstone) scalar coupled to a conserved cur-
rent. (4) It is possibie to construct hybrid the-
ories (e.g. , the hybrid Weinberg model) with a
conserved charge which is carried by vector bo-
sons and their currents and which is not coupled
to a massless vector. Are there realistic mod-
els in which that conserved charge is muon num-
ber, lepton number, or baryon number?
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