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This one-dimensional model exhibits a strong spatial collapse of the electric field
when the self-consistent pump amplitude is held constant. The linear instability saturates
if one allows for the self-consistent modification of the pump due to nonlinearities. The
saturated state is characterized by relaxation oscillations and spatially localized electric
fields of finite amplitude.

The linear theory' of the oscillating two-stream
instability (OTSI) predicts that a large-amplitude
electrostatic pump field whose frequency is slight-
ly below the electron plasma frequency should
cause the growth of nonoscillatory density pertur-
bations. Investigations of this phenomenon are
of relevance to studies of plasma heating, the
laser-pellet problem, and the relativistic beam-
plasma interaction. In addition, it is becoming
increasingly evident in the literature' ' that the
nonlinear evolution of the OTSI may play an im-
portant role in the final state of long-wavelength
Langmuir turbulence. It is well known that under
a wide variety of initial conditions, large amounts
of plasma wave energy tend to concentrate in that
region of the spectrum in which Landau damping
is small (small wave numbers, large phase ve-
locity). It has been found' that this spectral con-
centration of energy may induce a nonlinear in-
stability (of the modulational type) that leads to
the formation of spatially localized electric fields.
Such a collapse process constitutes an efficient
method of transferring energy to large wave num-
bers, where it is expected to be dissipated by
wave-particle interactions.

In this Letter we present a specific example
of the collapse process. It arises from a rather
simplified model of the OTSI. The essence of
this one-dimensional model consists of retain-
ing the basic assumptions underlying the linear
theory, such as the fluid description, neglect of
ion inertial effects, and neglect of wave-particle
interactions. The model contains several non-
linear effects, such as frequency shifts, har-
monic generation, and pump modification.

The model equation can be obtained as follows.

From the fluid equations for the electrons one
obtains the expression

which relates the high- and low-density fluctua-
tions, n„and n~, respectively, to the high-fre-
quency electric field E„. In Eq. (I) e and m are
the electron charge and mass, respectively, v,
is the electron thermal velocity, and n, is the
plasma density. Poisson's equation,

connects n„back to E„. In Eq. (2) Eo represents
the pump electric field generated by external
charges. The motion of the ions is determined
by
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where v~ is the ion fluid velocity, 7, and T,. are
the electron and ion temperature, respectively,
M is the ion mass, and &j v& j' is the ponderomo-
tive potential due to the high-frequency electric
field. In the spirit of the l.inear theory of the
OTSI one proceeds to neglect the ion inertial ef-
fects and thus obtains nl/n, = —EM/(T, + T;)J I U„l'/2.
With the definition

F„=CL'(», f) +E, ] exp(f~, t)+ c.c.,
in which ~, is the pump frequency, one finds

= (e/m ~„)' I E + E, i
'. Combination of these

relationships and definition of ( ~~ and c, as the
electron plasma frequency and the ion sound
speed, respectively, lead to

»~, —+ 3&, ,+,(IE+E,I' —IE+E, l „„')(E,+E„)= S(f).

This is the model nonlinear Schrodinger equation. The time-dependent function S(f) arises mathema-
tically from a simple spatial integration leading to Eq. (4). It represents physically the coupling be-
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tween the external circuit and the plasnia. To
describe a particular experimental situation an
additional equation (a circuit equation) for S(f)
must be specified. A realistic pr oblem would

then consist of solving the coupled plasma and
circuit equations self-consistently. The reason
for subtracting the spatially homogeneous part
(k =0 component) of IE+E, I in Eq. (4) is that
such a term does not contribute to the effects of
the ponderomotive force. In the limit in which

IEI «E, one can easily recover the linear theory
of the OTSI from Eq. (4). The effects of electron
collisions are included by setting Blat- a/at+ v„
where v, is the col1.ision frequency, The model
equation can be expressed in dimensionless form
by using the following scaling:

E —E/E„ t —~~ t (E,'/16&~n, mc, ') —= I't,
x -k,x(E,'/24~a, mc, -') ~' = k~, -

in which kD=~~/v, . The only free parameter
that appears in this scaled model is the value
of v, .

We have solved Eq. (4) numerically with the
help of the on-line system at the University of
California at Los Angeles. The numerical al-
gorithm consists of decomposing Eq. (4) analy-
tical1y into Fourier modes and evaluating the
nonlinear term by the fast Fourier-transform
method. The resulting coupled equations are
then solved by integrating in time over the cor-
responding Green's functions. For the typical
results presented in this Letter we used 32 Fou-
rier modes. The length of the system can be ad-
justed so that the number of linearly unstable
modes can be varied. Typically, this number
ranges from one to nine modes. In solving Eq.
(4) there are two extreme and highly idealized
cases that can be isolated:

Case A.—In this case one legislates that S(t)
is such that the spatially homogeneous part of
E is equal to zero. This implies that the exter-
nal circuit can overcome the nonlinear plasma
loading so that the amplitude and phase of the
self-consistent spatially homogeneous field are
held constant.

Case B.—In this case one has the opposite
idealized situation. It arises by legislating that
S(t) =0. This condition implies that the external
circuit can not match the plasma loading because
of the nonlinearities of Eq. (4}. As a consequence,
the amplitude and phase of the spatially homo-
geneous field within the plasma can be modified
by the growth of the instability.
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FIG. 1. Time evolution of total rvave energy and cor-
responding spatial dependence of the electric field.
Pump amplitude is constant. »,/I' = 0.5,

In Fig. I we present results characteristic of
case A. The system is started by assigning
small amplitudes to all modes and giving them
random phases. The initial evolution is charac-
terized by random amplitude and phase fluctua-
tions. These fluctuations continue until the prop-
er phase-matching conditions predicted by the
linear theory of the OTSI are satisfied. At this
stage the linearly unstable modes begin to ex-
ponentiate. The left-hand side of Fig. 1 shows
the subsequent time evolution of the total wave
energy. For early times the wave energy grows
exponentially as predicted by linear theory, How-
ever, as the wave energy becomes comparable
to the energy of the pump, a very strong non-
linear instability develops. To understand the
behavior of the system it is helpful' to examine
the spatial dependence of the electric field. This
information is provided by the right-hand side
of Fig. I for several key times in the evolution.
At time 4 one observes a sinusoidal perturbation
characteristic of early times. At time B the
a.mplitude has grown and the spatial dependence
exhibits a distortion arising from the interfer-
ence with the nonlinearly generated second har-
monic. At time C it is seen that the amplitude
of the peak has grown rapidly and the electric
field becomes localized in space. At time D we
observe a clear example of spatial collapse of
the electric field.

Figure 2 shows a typical Fourier spectrum ob-
served at the collapse stage of the problem. The
shape of the spectrum is given essentially by an
exponential, as is characteristic of strong har-
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Pump depletion is allowed. v, /I' = 0,1.
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FIG. 2. Typical Fourier spectrum at the collapse
stage. Fastest growing mode &/&0=4.

monic generation by the fastest growing mode
(II/II0= 4 in this case). The strong nonlinear in-
stability observed can be viewed as a type of
self-modulation of the growth rate by the fastest
growing mode. Keeping this dominant effect in
Eq. (4) one can solve approximately for a spa-
tially dependent growth rate. The expression
one obtains indicates that the growth rate is en-
hanced near the peaks of tEI ' and decreases in
the valleys; which particular peak gets enhanced
depends on the initial phases. The reason why
the spatial collapse is so rapid is that the modu-
lation of the growth rate is a process that enters
as an exponential of an exponential. Of course,
in our simplified model there are no effects that
can stop such a rapid collapse. It is expected
that ion inertia and wave-particle interactions
become very important at this stage of the prob-
lem and limit the amplitude of the localized elec-
tric fields. The results presented here are in-
tended to illustrate that the collapse can take
place within the confines of the physical effects
contained in this model.

Figure 3 displays results corresponding to
case B. The initialization of the system is as
described previously for case 4. It is observed
in Fig. 3 that the wave energy grows exponen-
tially and saturates, in contrast to case A. The

right-hand side of Fig. 3 shows the spatial de-
pendence of the quantity IE+E, I'/E, '. At time
A a small-amplitude fluctuation is observed.
At time 8 the fluctuation has grown and becomes
slightly distorted. At time C one detects that
spatially localized electric fields are also gen-
erated in this case. However, these structures
do not experience a runaway collapse because
the effective pump amplitude is reduced by the
nonlinearities, which can generate a k =0 com-
ponent as well as harmonics. Instead of spatial
collapse, in case 8 the system exhibits relaxa-
tion oscillations between the states exemplified
by times C and D.

Another point of interest seen in Fig. 3 is that
the wave energy at saturation can be smaller
than the pump energy in some instances. The
saturation level depends on how far above thresh-
old is the initial pump amplitude (i.e. , how small
we make I, /I' in our model). In other runs we
have made, it is observed that by decreasing v,
the saturation level approaches a value equal to
1 in the units used in Fig. 3.

In summary, a nonlinear Schrodinger-equa-
tion model of the oscillating two-stream insta-
bility exhibits a strong spatial collapse of the
electric field when the self-consistent pump am-
plitude is held constant. The linear instability
can be saturated if one allows for the self-con-
sistent modification of the pump. The pump mod-
ification arises naturally from the nonlinearities
of the model. In the saturated state there are
two properties of experimental interest. One is
the appearance of spatially localized electric
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fields, the other is the relaxation oscil1ations.
These distinct signatures may be helpful in iden-
tifying the oscillating two-stream instability. In
a recent theoretical study' the existence of a
random spectrum of localized electric fields has
been invoked to explain the results of a computer
simulation' of the OTSI. The nonlinear Schro-
dinger-equation model presented here gives a
simple example of how certain localized electric
fields ean be formed during the nonlinear stages
of the OTSI.
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The exact transition temperature and the order of phase transition are determined for
a vertex model in three dimensions. The transition is in general of first order with a la-
tent heat and occurs in a limited region in the parameter space. Details of the region de-
pend on the underlying lattice and differ significantly between lattices with high {fcc and
bcc) and low {simple cubic and diamond) coordination numbers.

Investigation of phase transitions in lattice sys-
tems has centered around the study of vertex
models. The most general result is that of the
two-dimensional eight-vertex model which in-
cludes the Ising and the ferroelectric models.
Little is known, however, about the critical be-
ha, vior of vertex models in three dimensions. '

In this Letter we report on some exact results
for a three-dimensional vertex model. The anal-
ysis is an extension of our earlier discussion of
a sixteen-vertex model. ' In this earlier investi-
gation, the fact that the model is two-dimension-
al is explicitly used. It turns out that, with slight
modifications, the argument is also applicable to
three-dimensional models. We can then deter-
mine, using only elementary considerations, the
exact transition tempera, ture and the nature of
phase transition for a rather general vertex mod-
el in t:hree dimensions. It is also noteworthy that
a significant difference in the critical behavior is
found between lattices with high and low coordi-

nation numbers.
Consider a lattice 8 (in any dimensionality) of

N vertices (or sites) with coordination number q.
Assume cyclic boundary conditions and let the
&qN edges of 2 be independently covered by bonds.
There are then 2'"' distinct bond coverages on

Also at each vertex there are 2' different
bond configurations. Associate a fixed energy to
each of the 2' vertex configurations and let E be
the sum of the X vertex energies for a given bond
coverage, 8, of Z. The partition for this "2'-
vertex model" is then

The model we propose to consider has the fol-
lowing assignments for the vertex energy, E„:

E„=no for vertices having

n = 0, 1, . . . , q —1 bonds;

=as for vertices having q bonds.
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