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Plasma Heating by Alfven-Wave Phase Mixing

Akira Hasegawa and Liu Chen
Bell Laboratories, Murray Hill, New Jersey 07974

(Received 30 May 1973)

We propose the heating of collisionless plasma by utilizing a spatial phase mixing by
shear Alfven wave resonance and discuss the application to toroidal plasma. The phase
mixing takes place as a result of the nonuniform Alfven speed. The approximate heating
rate per cycle of the wave frequency is given by (b, '/po) Kl&~, where ~ is the measure of
the nonuniformity, && is the wave number perpendicular to the direction of the magnetic
field and the nonuniformity, and ho is the flux density of the applied-wave magnetic field.

Plasma heating is one of the most important
issues in the success of controlled thermonu-
clear fusion. In particular, heating beyond the
temperature achieved by Ohmic heating in a to-
roidal machine is a very crucial problem. In
such a regime one promising way is to use elec-
tromagnetic waves. In this regime, heating by
waves must rely on collisionless dissipation.
Ion- cyclotron- resonance heating, ' lowe r- hybrid-
resonance heating, ' and parametric excitation'
are some of a few methods proposed so far,
However, because of the relatively short wave-
lengths, these methods have intrinsic difficulty
in coupling the wave energy to the plasma. We
propose in this Letter the use of the resonance
of a shear Alfven wave that has a much longer
wavelength.

In a nonuniform plasma, the Alfvdn speed v„
is a function of position in the direction of the
nonuniformity x. The shear Alfven wave whose
dispersion relation is given by ~ =k]]v„, where k]~

is the wave number parallel to the magnetic field,
meets the resonant condition at a local point
(pla.ne) x, in space where the excited frequency
e, satisfies &u, =k~~U„(x,). Hence, if a surface
magnetohydrodynamic (MHD) wave' is excited by
an external coupler, the wave will be phase mixed
by this resonance and its energy dissipated to the
plasma. We use the surface wave rather than the
magnetosonic wave as the coupling wave because
the magnetosonic wave will propagate through the
plasma and may produce undesirable effects.
This may be achieved by choosing k „ the wave
number perpendicular to the density gradient as
well as to the ambient magnetic field (ks in the
cylindrical plasma), larger than k„such that k~U„

~, is satisfied for the minimum Alfven speed.
We assume a hot plasma in a straight but

sheared magnetic field. For such a geometry
the linearized ideal MHD equations give

p~ j—(B.v)'] = -q,vp —BB v v (, (1)

d eaa' d(,
dx s —o.B'k ~'(x) dx (5)

Here

s(x) =~ p~ (x) —kii2(x)&'(x),

o.'(x) = I +yi} +y'P'k~, '8'/((u'p~ —yak„'a'),

P(x) = u.P/&'.

We assume p ~ 1, so that e is always positive.
In the derivation of Eq. (5), we have assumed a
perturbation of a form $„=$„(x)exp[i(k, z+k„y
—vt)] with v = ~, + i 5 (5 = 0+) and have adopted lo-
cal rectangular coordinates with e ~~= B/B and e
=e„xe„. We note that near resonance, ~'-=kl,'(x,)
xu~'(x„}, where a =0, Eq. (5) reduces to

d'(„d inc d lot~ d$„
(5a)

which is singular at x =x,. The existence of such
a localized singu1arity in the MHD equations has
been noticed by Pridmore-Brown for a cold plas-
ma. ' This singularity causes the phase mixing
of the wave. ' The solution of Eq. (4) which is sin-

where ( is the displacement vector, p the total
pressure (= p+b 8/p. ,), p„ the plasma mass den-
sity, b the perturbed magnetic field, and B the
flux density of the ambient magnetic field,

B=B,(x)e, +B,(x)e,. (2)

(In a toroidal plasma, x, y, z correspond to radial,
poloidal, and toroidal directions, respectively. )
If we combine Eq. (1) with Maxwell's equations,

b=B V$ —BV $ —(dB/dx)$„ (3)

and the equation of state (after eliminating num-
ber density by using the continuity equation)

P = —(„dP/dx —yPV f„

P being the plasma static pressure, we obtain
the following wave equation for $„:
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gular at x xp can be mritten near x =x, as

(,=Cln(x x-, +i5'), (6)

sheet current in the vacuum,

J,(x, y, z, t) =I 5(x +0) exp[i(k, y+k, z —&u~t)].

and the corresponding e~ component of the dis-
placement is given by

$~ = (iC/k~)(x -x, +i5') ',

where O'=1m'/(de/dx). The absorption rate of
energy W by the plasma due to the phase mixing
is obtained from

dW/dt =Re f J E*dV

in which E =i~(xB and J=Vxb/g, . It turns out
that only the compressional component of b,

k = —B(ik & +d$„/dx) —(dB/dx)g„,

contributes to Eq. (8). The major contribution
to the integral (8) comes from near the singular
point x,. Hence, using Eqs. (6) and (I),

diV ~, !Cl' de/dx

The entire boundary-value problem then can be
solved exactly using Eq. (10) and the familiar
boundary conditions at x =0 and a.' The coupling
is achieved by the J&B force which drives a mag-
netic compression in the plasma. The calcula-
tion is straightforward and the result is

&k, !Bo(x = 0) = —2ik, (x = 0)/I',

where 5, is the x component of the wave magnetic
flux density provided by the external circuit and

r=[1,(g)-f, (g)] '
d I'd +A, (g)+SC, (g),

K, (d) —K,(d)

with g= —lk, (x, &0 and d =1k, l(a —x,). In the limit
Ig l, Ida»1 me have

[
Z.

(
= (2„)&&2el~l)g )»&

and )C( becomes for Ip Ipe,

lCI' de/dx'
= (dp&LyLg y 2 )

O, kz

Icl=(—
) !

' "'0!(Ia,lx,)'".

Here 0&xp&a and

(12)

d')„d inc dE„
dx dx dx (10)

The external driving source is represented by a

where L, and L, are the size of the plasma in
the y and z directions. The above result shoms
the existence of collisionless absorption of an ap-
plied field.

To evaluate the rate of pomer absorption quan-
titatively we have to obtain C, which is a mea-
sure of the plasma displacement caused by an ap-
plied high-frequency magnetic field. This can be
done rigorously only when the geometric config-
uration of a plasma is specified„To obtain an
approximate representation, me take again a slab
geometry with linearly changing density and mag-
netic pressure, and solve the boundary-value
problem. The plasma is taken to be semi-infin-
ite (x &0) with its equilibrium density p and mag-
netic pressure B'/2 ~, cbeing constant except for
0 &x & a, where p (x) = p, x/a and B'(x) = B,'(1
—zsx). The plasma temperature is uniform for
all x &0. Thus, e depends linearly on x within 0
~x ~g and is constant otherwise. For simplicity
me further assume P « i, B,»B„and A, »A, .
Kith these assumptions, me then have k~ = 0„
and ~a B'k '[» ) el, and Eq. (5) can be approxi-
mated a,s

~, k„~ = —,'p. P, exp[-
~ k, ~(x, +k)].

From (9) and (11) we obtain the following esti-
mate of the energy absorption rate:

(d

This expression can also be obtained from the
evaluation of the Poynting vector. ' Note that in
the cylindrical coordinates Ib„) decays as r™
(m is the azimuthal mode number) rather than ex-
ponentially. ' Also note, because we use the cut-
off mode mith respect to the magnetosonic as
mell as electromagnetic waves, there is no radia-
tion loss. Consequently, the heating efficiency is
decided only by the Qhmic loss in the coil.

The above result ean be compared mith heating
by transit-time damping, v hich also uses Alfven
waves. Aside from numerical factors, the above
expression gives a heating rate larger than that
by transit-time damping by a factor of 1/P.

For practical applications we must note the
following:

('I) Prevention of Plas~na loss.—Although the
use of a wave with a long wavelength provides an
easier coupling and makes possible the use of a
cheaper power source, it may provide a large-
seale perturbation in the plasma, causing unde-
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Hence the dissipated energy goes presumably to
ions. However, if a charge separation is pro-
duced parallel to B„electrons are involved and
may be heated. This may be avoided if the v, ave
frequency is chosen to be higher than the elec-
tron drift wave frequency, (k& v, h, '/~„d lnp„/dx.

The authors appreciate discussions with S. J.
Buchsbaum, J. Tataronis, and W. Grossmann.

FIG. 1. Schematic diagram of the proposed setting
of a heating coil using shear Alfven wave resonance.
Many turns in the poloidal direction are shown to em-
phasize the desirability of having 0&»

~I
to cut off the

magnetosonic wave. However, in the real system even
if m -1 or 2, this condition is satisfied.

sirable loss of the plasma. The use of the sur-
face wave (not a surface eigenmode} rather than
the magnetosonic wave will substantially reduce
this problem.

(2) Uniform keating. To prev—ent a localized
heat deposit, the frequency must be swept so that
the resonant condition ~, =k~, v~(x} is satisfied for
major portions of the plasma.

t'3) CouPler design. —Because one cannot place
a metal boundary inside the plasma, the standing
wave in the parallel direction, which is essen-
tially needed for the resonant condition, must be
provided by the coupler design. One way is to
provide a periodic coil in the toroidal direction
wound parallel to the toroidal axis as shown in
Fig. 1. One must chose k„smaller than 1/p, to
prevent finite Larmor- radius coupling between
shear and compressional waves.

(4) Couplirg to electrons. —The present method
uses a one-fluid approximation of the plasma.
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