
VoLUMz $2, NUMszR I PHYSICAL REVIEW LETTERS 7 JANUARY 1974

H. Risken, Z. Phys. 251, 231 (1972) .
For economy of expression we refer to the initial

value as the zeroth derivative.
A sequence of numbers p„ form a Stieljes sequence

if they can be written as the moments of some probabil-
ity density p(x), that is, p„=J x"p(x) dx. For Fokker-
Planck systems, p(x) can be expressed in terms of the
eigenvalues g„and eigenfunctions p„of & as p(x)
=g„i((1"of1'„))ib(x-b„).

5R. G. Gordon, J. Math. Phys. (N.Y.) 9, 655 (1968),
gives a vexy readable exposition of these points and
numerous citations to the literature; The Pack Appxox-
imant in Theoretical Physics, edited by G. A. Baker
and J. L. Gammel (Academic, New York, 1970); J.A.
Shohat and J, D. Tamarkin, The Problem of Moments,
Mathematical Surveys, No. 1 (American Mathematical
Society, Providence, B. I., 1950). In the usual discus-

sions the mathematical quantity considered corresponds
to the Laplace transform of the correlation function.
This Laplace transform admits an expansion as a con-
tinued fraction whose approximants are certain ration-
al functions. Peeling off the Laplace transformation
from these arguments yields the assertions made here.

This is the procedure given an even number of ini-
tial derivatives; for an odd number the procedure is
similar except that pp =0.

YR. D. Hempstead and M. Lax, Phys. Rev. 161, 350
(1967); M. Lax and M. Zwanziger, Phys. Rev. A 7, 750
(1973); H. Risken and H. D, Vollmer, Z. Phys. 201,
323 (1967); H. Risken, Fortschr, Phys. 16, 261 (1968);
C. D. Cantrell and W. A. Smith, unpublished.

E. Jakeman and E. R. Pike, J. Phys. A: Proc. Phys.
Soc., London 4, L56 (1971), have called attention to
this fact.
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%e derive a modified Korteweg-de Vries equation appropriate to small-amplitude,
spherically symmetric waves. A numerical solution is obtained which differs qualitative-
ly from the one-dimensional soliton solution.

Soliton solutions' in one dimension are now
well known for acoustic waves propagating in a
collisionless plasma of warm electrons and cold
ions. 2 Experimental observation of this phenome-
non is well founded. ' The two-component (elec-
trons and ions) fluid equations, together with
Poisson's equation, reduce to the Korteweg-de
Vries equation' in the small-amplitude approxi-
mation. The solution is a symmetric pulse mov-
ing with constant velocity, for which the squa, re
root of the peak amplitude multiplied by the width
takes on a characteristic value.

In this Letter, we report results recently ob-
tained by working with the three-dimensional,
spherically symmetric version of this problem.
We follow the procedure used in Ref. 2. The sys-
tem of equations describing the motion is

t, = —ve (l /A. n+~;t),
'g =C (d;t, (6)

where c is the expansion parameter, AD the De-
bye length, and w; the ion plasma frequency. We
transform Eqs. (1)-(4) from the coordinates (l', t)
to the ((,q). Then we expand in powers of e:

llo +

fluid velocity, r the radial distance, and t the
time. A stationary, isothermal electron Quid
has been assumed.

We investigate ingoing solutions of Eqs. (1)-(4)
in the small-amplitude approximation. The dis-
persion relation for acoustic waves in the linear
approximation for long wavelengths leads us to
define new dimensionless coordinates

&n/& ~ = —(e/kT)in,

sv/et+ v8 v/er = (ze/M)z,

~ '(8/er)(HZ) = 4~e(ZX- r),
ex/8 t+ ~-'(() /8 ~)(Hxv) = 0.

(2)

N is the ion density, Ze the ion charge, I the ion
mass, n the electron density, T the electron tem-
pelatule, E 'the e'lectr1c fleM (radial), V tile loll

W = (1/Z)(n, +X'),

("+ ' ("+...
N' = eN~" + e'N"'+

V = eV~') +e'V ' +

(12)
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where

Z=veZ. (13)
We solve for a. propagating disturbance (n', N',

V, Z) in a stationary background, with uniform
electron density n, . The first-order equations
give

I I-3.0

&(x) N(t)

Z(') = [(4 PT)'"/, ]6 V(')/'6 ~,

(14)
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n(» = —(n, /c, )V(» (16)

where c, = (ZkT/MP" is the sound speed. Actual-
ly, an arbitrary function of g can be added to the
right-hand side of Eq. (16). The effect of such a
term has been investigated in the literature' and
does not change the essential properties of the
solution.

The second-order equations, together with Eqs.
(14)-(16), yield the following equation for the di-
mensionless first-order ion fluid velocity: 0
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where

U V(x)/c

(17)
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Thus we obtain a Korteweg-de Vries equation
plus an additional term U/)).

A solution was obtained by numerically integrat-
ing Eq. (17) using an initial condition correspond-
ing to a one-dimensional soliton,

U(q„)) = 3 sech'(g/W2).
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Without the U/)) term in Eq. (17), the initial
pulse would propagate to larger $ values without
changing its amplitude or shape, with a propaga-
tion velocity 1.0. With the U/7) term present,
our spherical soliton develops according to Figs.
1(a)-1(c). As time increases and the solution
propagates to larger g, the value of U increases,
the width decreases, and a small stationary re-
sidue is left behind the advancing pulse. In the
lab frame, the pulse moves inward at an increas-
ing speed somewhat greater than sound speed.
At the same time, a small residue develops and
moves inward behind the pulse at sound speed.
It is found that the square root of the peak ampli-
tude multiplied by the width (full width at half-
maximum) of the pulse is constant to within 2/o

over the entire run —31.6 & q & —6.6.
The numerical solution of Eq. (17) is based on

a two-level finite difference approximation meth-

FIG. &. Development of spherical soliton. Dimension-
less U versus spatial coordinate t at times (a) )) =-31.6
(initial condition), (b) )=-716.6, and (c) )) =-6.6.

od. The scheme is similar to the one used by
Zabusky and Kruskal. ' The difference approxima-
tion for the third derivative limits the size of &g
in the integration, such that the condition &q
~0.7698(b, ))' must be satisfied for numerical
stability. This limit is obtained from a stability
analysis and is observed in computational tests.
Periodic boundary conditions in $ were used.

The accuracy of the numerical results was test-
ed in several ways. Zabusky' obtained an exact
analytical solution for a special case in which the
U/q term is not present. A run with the U/7)
term removed from the program and &8 =0.1 re-
produced this analytical solution with an error of
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less than 1%. With the U/7) term present, we compared runs with 4&=0.2, 0.1, and 0.08. The ob-
served a.greement was & 1% in the position of the peak and ~0.3/o in the value of the peak velocity. For
the run with +=0.08, the momentum Rnd energy were conserved to within 2 x10 '.

An approximate solution to Eq. (17) for early times is

U "(I), 5) = Uo(no/n) sech'((UoI)o/6n)'"[5 -
&o '-I)oUo I (I)/I)o)]J, (2o)

where Uc=U(I)c, &c). According to Eq. (20), the
peak should move so that

~p" (n) = ~'"(n.) -'ng .»(n/n. ). (21)

8U('/8I) +U('/I) +U&'8U(')/8 ~ = 0

to obtain

(22)

„U(.& „n.U." &"[~"(n)—~"(n.)]
1+~~" »(~/~, )

If U('(I)) =U(I'"'(I)), $ '"(I)) is the position of the
peak at time g. The constant of integration, A ',
is different for different points U". The formu-
la (23) has been checked for several U values
over the entire range —31.6 ~ g ~ —6.6 and works
quite well.

It is worthwhile to remark first that the early-
time solution [Eq. (20)] predicts a constant value

(23)

Indeed, this relationship holds for —31.6 & q
~ -26.6. In order to describe correctly the mo-
tion of tile PeRk, Rn additional term aI)cUc(1/'g
—1/I)c) was needed for —26.6 ~& I) 6 —11.6. In the
range —31.6 ~ q a —26.6, allowing for a small
displacement in (, the solution U(" from Eq. (20)
agrees with the numerical solution to -8%%uc.

We can find the evolution in time of any point in
the propagating pulse from a knowledge of the
characteristic of that point in the (g, I)) plane. We
solve the equation

for the square root of the peak amplitude multi-
plied by the width, and this is observed in the
numerica, l solution for all times. Secondly, a
comparable amount of momentum is contained
in the residue as in the pulse at the end of the
run (I) = —6.6). However, only a negligible por-
tion of the energy of the initial pulse is "shared"
with the residue. Finally, the main part of the
solution, contained in the pulse, grows faster
than q"' and propagates faster than a correspond-
ing one-dimensional soliton with the same ampli-
tude.

*Work performed under the auspices of the U. S.
Atomic Energy Commission.
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Using a light-beating spectrometer, we have observed in the smectic-A phase of P-
cyanobenzilidene-P-octyloxyaniline the thermally excited undulations of layers predicted
by de Gennes. From the wave-vector dependence of their damping time we determined
the diffusivity of the angular orientation, X&/g = (2.0+ 0.2) x 10 cgs. From the thickness
dependence of the boundary quenching, we determined the penetration length, A, = 14+ 1 A
at 75'C

Smectic-A liquid crystals are systems of liquid
layers which can be aligned parallel to plane
glass boundaries. As shown by de Gennes' these
layers should undulate easily under thermal ex-

citation of wave vector q parallel to the layers.
These thermally excited undulations should give
rise to a strong depolarized quasielastic Ray-
leigh scattering. Intense but purely elastic light


