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Deuteron Wave Function at Small Distances*
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(Received 31 December 1973)

We show that the tensor polarization in elastic electron-deuteron scattering at large
but presently attainable momentum transfers is supersensitive to the deuteron wave func-
tion within 0.5 fm, but insensitive to the percentage of D state assumed. This may give
the first practical method to learn something directly about the two-nucleon interaction

in the core.

Recent developments of polarization experi-
ments in nuclear or particle physics greatly add-
ed to our understanding by giving detailed in-
formation about the spin structure of such reac-
tions and hence formulating severe tests for pro-
posed models. Extending this trend, in this note
we use a polarization quantity to yield informa-
tion about certain spatial features of the wave
function of the deuteron, namely its small-dis-
tance behavior which so far has been unyielding
to experimental probes, as demonstrated by the
large number of deuteron wave functions devel-
oped during past decades. These agree very
well beyond about 1.5 fm, but disagree violently
within 0.5 fm. This is so because for the exper-
imental quantities explored so far the wave func-
tion usually appears in an integrand weighted
heavily toward large distances. Examples are
all static properties of the deuteron and most
nucleon-nucleon scattering.

One might think that a weight function »™" with
a large » might change the situation. Not so,
because of formal difficulties at the origin, be-
cause of few reactions featuring »™" weight, and
because of » " not decreasing fast enough even
with large n.

The solution must be, therefore, to find a
weight which is finite at the origin, decreases
fast with distance, and then oscillates in order
to cancel large-distance contributions. This oc-
curs for the spherical Bessel function in elec-
tron-deuteron scattering. There the form factor
isl,z

do/dQ
(dU/dQ)poim
= G2+ G,  +[2tan?(30) +1] G2, (1)

G¥q) =

where g is the momentum transfer, ¢ the scatter-
ing angle, and G,, G,, and G, the charge, quad-
rupole, and magnetic form factors, respectively.
Fixing g but varying ¢ separates G,. The other

two form factors are
G{q) =2Gs(q) Filq),
Fo(@) = Jy (4 +w?)jo(kq7) dr, (2)
Fy(q) = J: 20(u — 87V 2)j J(3q7)dr,

i=0,2;

where Ggg is the isoscalar nucleon electric form
factor, u and w are deuteron S- and D-state wave
functions (see Figs. 1 and 2), respectively, and
jigr) is the ith spherical Bessel function. The
differential cross section alone cannot be used to
separate G, from G,; hence comparing wave
functions from such a measurement of G,?+G,*
failed,®* since this quantity depends almost en-
tirely on the large-distance contributions where
all wave functions are virtually identical. For

g* =210 fm "2 the experiment differs by less than
10% from the closely overlapping bunch of theo-
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FIG. 1. Various deuteron S-state wave functions pub-
lished in the literature. The normalization is f:[u2(x)
+w?(x))dx=1, where x is expressed in pion Compton
wavelengths.
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FIG. 2. Same as for Fig. 1, but for D-state wave
functions.

retical curves (except for the primitive Hulthén
soft core).” The small difference might be due
to baryonic resonances states.® At large ¢° there
are somewhat larger differences, but experi-
ments are inaccurate and the theory uncertain
because of unknown meson currents and relativ-
istic corrections. For example, see Ref. 4, in-
spite of the ingenious devices used for that anal-
ysis.

Thus we must separate G, from G, by polariza-
tion.” Vector polarization is approximately zero,?
so we turn to tensor polarization, given by (1),

3 (do/d), - (do/dSd),
VZ (do/adg),

) 2G,G, +G*/V2 (3)

2 2 ’
G, +G,

P=

where the subscripts 1 and 0 on the cross sec-
tions indicate the polarization of the deuteron,
and the subscript # means “unpolarized.” The
projection of the deuteron spin (eigenvalues 0
and = 1) should be taken along g. We have then
(do/df),=(do/dS).,, so that (do/dQ), = $(do/dQ),
+4(do/dQ),. The tensor polarization is indepen-
dent of Ggg and depends only on G,/G,.

G, depends on the D-state wave function; G,
does not. Hence P can determine the percentage
of D state which is still uncertain within a factor
of 2. We will, however, exploit P differently.
Since G, and G, change signs at different ¢’s,
we can have a negative G,G,. Furthermore, G,
is positive for all practical ¢’s, but G, flips sign.
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FIG. 3. Tensor polarization P in elastic electron-
deuteron scattering versus the momentum transfer ¢

on a semilog scale. For a legend of the curves, see
Fig. 1.

The exact place where P flips sign is therefore
very sensitive to « at small distances because
mostly the first lobe of the Bessel function con-
tributes.

P is shown in Figs. 3 and 4, versus q on semi-
log and linear scales, for the various wave func-
tions® "' plotted in Figs. 1 and 2. We see that up
to about ¢=5, P is insensitive to the particular
wave function since the first lobe of the Bessel
function is broad and includes large-distance
contributions where wave functions agree. As
q increases, the lobe narrows so that it includes
the wave function only within 1.5 fm, where wave
functions greatly differ. We see that between
q =6 and 10 different wave functions give P’s
differing by orders of magnitude and even sign.
In the region ¢ =6-8 just the sign of P can elim-
inate many wave functions, and its order of mag-
nitude excludes all but two or three. At very
large g the lobe is very narrow and includes
nothing of any wave function, thus giving always
a vanishing P.

Since G, is proportional to the square root of
the D-wave probability, P will vary by 1.4 be-
tween the limits of that probability. This is neg-
ligible compared to the shape dependence, as
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FIG. 4. Same as for Fig. 3, but on a linear scale.

illustrated in Fig. 5, if we are at ¢=6-10. At
small q, however, the shape dependence is much
less than the dependence on D-state probability.

The interesting region, ¢*>~20-40 fm ™2, can
be reached with present electron accelerators.
Unpolarized cross sections up to g>=34 fm ™2
have been measured, > 2 and numerical esti-
mates show that at higher energies and smaller
angles giving the same g, cross sections are
still large enough for measuring. For 6 <10°
magnetic scattering is negligible, so the cross
section is limited only by how small a 6 can be
produced. At 6=5°6' we reach the desired 4 re-
gion, from 10 to 18.1 GeV, while at 6 =10° the
range is 5.1 to 6.8 GeV.

At near-forward angles detector resolutions
must be good to eliminate inelastic events, and
so some authors* prefer to analyze the recoil
deuteron momentum in coincidence. One can
either measure the deuteron polarization by a
second scattering, or use a polarized deuteron
target. In the latter case one can polarize per-
pendicularly to the plane of scattering, thus get-
ting (do/dQ),, which, together with (do/dQ),,
gives (do/dQ),.
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FIG. 5. Tensor polarization P in elastic electron-
deuteron scattering for the Hulthén-Sugawara deuteron
wave function, with two different D-state probabilities
of 3% and 5%, respectively.

We conclude, therefore, that a careful mea-
surement of P in the region of ¢ =6-10 would
yield a rather definitive determination of the
deuteron wave function down to about 0.2 fm.
Such a determination would represent a major
breakthrough in our understanding for strong
interaction physics as well as for astrophysical
calculations.

We are indebted to J. S. Levinger for some in-
formative communications. He, with his co-
workers, has obtained, independently of us, re-
sults®! somewhat similar to ours, with an empha-
sis on the smaller values of g.

*Work supported by the U.S. Atomic Energy Commis-
sion.
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Maximum Mass of a Neutron Star#*
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On the basis of Einstein’s theory of relativity, the principle of causality, and Le Cha-
telier’s principle, it is here established that the maximum mass of the equilibrium con-
figuration of a neutron star cannot be larger than 3.2M. The extremal principle given
here applies as well when the equation of state of matter is unknown in a limited range of

densities.

The absolute maximum mass of a neutron star provides a decisive method of

observationally distinguishing neutron stars from black holes.

The estimate of the range of the critical mass
for a neutron star varies from 0.32 to 1.5M.
The greatest uncertainty comes from the equa-
tion of state at nuclear densities and above. In
fact the knowledge of physical properties of neu-
tron-star material at densities smaller than 103
g/cm3, essential to describe the properties of
the crust of neutron stars' and perhaps the change
in period of the pulsars,? is of no relevance for
the determination of the maximum mass of a neu-
tron star. The reason is that on increase of the
central density the star becomes more and more
compact and its crust becomes only a few tens of
meters thick, or even less, depending on the
models.® At nuclear densities and above, the
equation of state is very poorly known because of
the presence of strong interactions® between nu-
cleons and threshold effects in the creation of
resonances®'® because of unavailability of phase
space.

In recent times it has become clear that the
most powerful tool in determining the difference
between neutron stars and black holes relies on
the possible difference in mass of the two ob-
jects.” No possibility exists of differentiating
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them on the basis of electrodynamic properties.®
Moreover, the recent discovery of x-ray sources
in binary systems gives the possibility of deter-
mining the mass of a collapsed object with great
accuracy.’ We therefore have the clear need of
establishing on solid ground the maximum mass
of a neutron star. Instead of trying to analyze
the details of nuclear interactions we follow here
a different approach. We take that most extreme
equation of state that produces the maximum crit-
ical mass compatible solely with these three con-
ditions: (1) standard general-relativity equation
of hydrostatic equilibrium, (2) Le Chatelier’s
principle, and (3) the principle of causality.
While no suggestion is made that the resultant
equation of state accurately represents the actual
physical behavior of matter, it does illustrate a
point of principle by yielding a maximum mass
for the critical mass. It is not altogether new to
approach the equation of state from the side of
hydrostatic theory rather than from the side of
the structure of matter. Gerlach'® has shown
that from a set of measurements on a sequence
of stars at the end point of thermonuclear evolu-
tion one can, in principle, work back to deduce



