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ally insufficient for a higher order approximation. But
for the central part of the Na-Cs composition range it
is meaningful to take into account also the curvature
of the older p-versus-T results. Then the values of
dp/dT given in Hef. 4 and repeated in Fig. 1 of this
paper can be shown to apply effectively to tempera-
tures lower than 100'C, down to 80'C. The discrep-
ancy for pure cesium cannot be explained in this way.
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The inhomogeneous-electron-gas theory of Hohenberg, Kohn, and Sham has been used
to investigate the effects of nonlocal exchange and correlation on the Fermi surface of a
simple cubic metal. The periodic lattice effects were represented by a realistic simple
model pseudopotential. We find that the nonlocal terms substantially reduce the maxi-
mum Fermi-surface distortions, as experiments suggest.

Comparisons of experimental Fermi -surface
(FS) distortions with first-principles calculations
of these distortions result in significant discre-
pancies. A particularly striking example is the
recent work of Janak, Williams, and Moruzzi, '

who examined the effect of local exchange and

correlation potentials on the FS of Cu. None of
the potentials based on fundamental theory (Sla-
ter, ' Kohn and Sham, ' and Hedin and Lundqvist')
resulted in agreement with experiment. It is
especially disappointing that the local potential of
Hedin and Lundqvist' leads to no improvement
over the simple local theory. '

There have been numerous calculations of the
band structures and Fermi surfaces of the alkali
metals. (For a recent review see Lee.') The
general tendency is for the theory to produce
maximum distortions which are considerably
larger than those observed. For example, Law-
rence' found that the FS of Cs touched the zone

boundary in the (1, t, 0) direction. Other work-
ers" have found maximum distortions of order a
factor 2 too large. In Li the maximum calculated
distortions" are again a factor 2 larger than the
most recent experimental value. " All the above
first-principles calculations share one common
approximation: They calculate the FS with a lo-
cal exchange-correlation potential. Kane' has re-
cently investigated the effects of nonlocal ex-
change and correlation in the band structure of
Si and found them to be substantial.

The primary objective of this work is to show

by direct calculation with a realistic model that
the FS given by a nonlocal many-body —type theo-
ry is significantly different than the correspond-
ing local theory, both treated within the frame-
work of the Hohenberg-Kohn-Sham""" theory of
an inhomogeneous electron gas.

The general equation from which elementary
excitations F.~ of quasiparticles, and hence the
corresponding FS, can be determined is'

(A-'l2»i) V'q r(F)+ Jd r' '(r, r': L-, )g &(F') = p rj -„(F)

Z(F, F'; E) = V(r) 5(F —r') ~ M(F, F', I:), (2)

where 2 is the so-called mass operator. To ex-
hibit explicitly the local and nonlocal components
of Z, write

where )'(F) = V,,~(F)+ VH(F), V, „,(r) is the applied
external potential, ):"H(F) is the electrostatic po-
tential (Hartree field) of the electrons, and M is
the nonlocal (exchange and correlation) part of Z
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whose structural form is given by many-body
theory. "

The central result of the Hohenberg and Kohn'
theory is that any property of the ground state of
a system of electrons is a unique functional of
the density n(r) of the ground state. In particu-
lar, Z is such a functional. Thus, we turn our
attention to finding n(r) via the Kohn and Sham'
theory, which also gives a local theory for the
determination of the FS. According to Kohn and
Sham, n(r) is obtained by finding the self-consis-
tent solution of the equations

will]. (b) The self-consistent solution of Eqs.
(3) and (4) would give the density n(r) exactly if
E„,[n] were known. It is this latter property
which we wish to now exploit.

%e emphasize that our interest is strictly the
effect of nonlocality of M on the FS. Thus, we
do not wish to investigate the effect of the local
Hartree field VH(r'), nor become involved with
complicated self -consistent band-structure cal-
culations. This is achieved as follows: Instead
of starting with an external potential V,„,(r) in
Eq. (3}and constructing the corresponding self-
consistent density distribution, the process is
reversed; i.e., construct the external potential
corresponding to a given self-consistent density
distribution. " In other words, solve the equation

where V(r') has been defined in Eq. (2),

t(„,(F}=—EiE„,[n]/f(n(F), (5)
[-(ft' /2m)v'+ V (F)]ygF) = e(, qgF), (6)

E„,[n] is the exchange and correlation functional
which in principle includes all many-body effects,
and K „-=E;(k) is the FS that encloses the correct
number of electrons.

At this junction two remarks are in order:
(a) The V~gF) and ~k of Eq. (3) do not represent
the quasiparticle states or excitation energies.
Thus, it would be extremely fortuitous for Eq. (4)
to give the correct FS [the solution of Eq. (1')

where V (r )is s'ome (non-self-consistent) period-
ic model pseudopotential appropriately chosen,
and construct the density according to Eq. (4).
Equation (6) is easily solved since it is not a self-
consistent equation and more important from our
viewpoint gives the exact density n(r) to be used
in Eqs. (1) and (2).

The effect on Z(F, r'; E) of introducing V (r\ in
Eq. (6) can be obtained by comparing Eqs. (3) and
(6). Clearly

V(r') = V (F) —v„,(F),

Z(F, r '; E) = V (r) 6(F —r')+ M(F, r'; E) —U„,(r') f((F —r ').

[At first sight Eqs. (2) and (8}might appear contradictory to the theorem that Z is a unique functional
of n This i.s however immediately resolved by recalling that V(r) of Eq. (2) is also a unique functional
of n.'] By substituting Eq. (8) in Eq. (1), we find

&oft(r)+ V 0l(r)=&f~6r)
where Ii, is the Hamiltonian in Eq. (6) and

V~)( gr) —= Jdr'[M(r, r';Eg} —v„,(r') 5(F —r)]lt Qkr').

Equation (9), like Eq. (1), is exact; however, because of the complicated form of M neither is tract-
able without approximations which we now consider.

Sham and Kohn" (SK\ have suggested a number of approximations for M based on its functional de-
pendence on n(r). Their first approximation is

M(F, r', Eg) =M„(F—F';E1 —V(ro); n(Fo)),

where M„ is the self-energy operator of a uniform electron gas of density n(r, ), with r, =(r+ r )j2.
To remove the explicit dependence of V(r, ) in Eq. (11) and for FS calculations to remove the E-„depen-
dence in hl„, SK use the relation

t(, = V(r, ) + p„(n(F,)),

where (u is the chemical potential and p„(n) is the chemical potential of a uniform gas of density n

(12)
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The particular form for M„depends on the choice
for the many-body contributions.

The corresponding approximation for v„,(F) is

v „(r)=d(n e„(n)) dn, (15)

where e„,(n(F)) is the exchange and correlation
energy per electron of a uniform gas with density
n(r) and for consistency e„,(n) will be determined
with precisely the same many-body corrections
used to define M„.

%e are now in a position to define precisely
what we mean by a Fermi surface derived from
a. local and a, nonlocal theory: (a) Solve Eqs. (3)
and (4') self-consistently for eg and n(r) with

v„,(F) given by Eq. (15). From the ek's of Eq. (3)
determine the Fermi surface, which mill be re-
ferred to as the loca. l FS. (b) Use the density
n(r) in Eq. (14') to obtain M„which would then be
used in Eqs. (1) and (2) to determine E1 and the
corresponding FS, which we mill refer to as the
nonlocal FS.

Actually, in the calculation which we present
here the self-consistent calculation (a) has been
replaced by Eq. (6) and the corresponding n(r) it
produces. The effect of nonlocality is contained
in Eqs. (9) and (10), so that if the effect of non-
locality is small then V~ of Eq. (10) will not per-

with V = 0. This yields

M(F, r '; Ep) = M„(F—r '; E„—p, + p„(n(r, )); n(r, ))

Since our objective is to solve Eq. (9) for E); on
the FS, i.e., E, = p. , the Eg dependence on the
right-hand side of Eq. (13) is removed so that
for our purposes

M(F, r'; Et;) =M„(r —r'; v. „(n(F,)); n(r, )). (14)

! turb the local FS obtained from Eq. (6').
Noting that the model pseudopotential may be

written as

V (F) = +~V (G)e ' *',

where the G's are the reciprocal-lattice vectors,
the solution for the local problem !part (a)] is ob-
tained by expanding the wave function in plane
waves (I) is volume of the crystal),

(p, p(F) = I) '"QoA o(vk)e "~"'', (17)

and substituting in Eq. (6). The energies e. , k

and the expansion coefficients A-„-(vk) are calcu-
lated in the standard procedure. Note that a band
index and reduced zone scheme for k has been in-
troduced. In fact (see below' ), by a special choice
of lattice and V in the model calculation present-
ed here, this local band-structure calculation is
made trivial.

The energies E g for the nonlocal problem are
obtained by expanding ( in terms of qi, gF),

( ~gF) = Q „c,(Ak) y, g(F),

and substituting in Eq. (9). The energies are giv-
en by the solution of

(20)

The mhole nonlocal nature of the problem is nom
contained in the last term of Eq. (20). To evalu-
ate this term within the approximation of Eqs.
(14) a.nd (15) we first note that

M„(r —r'; p„(n(F,)); n(F, ))= 0 'Q-M(p, p„( (Fn, )); n(r, ))e'P" (21)

when M(p, p„(n(F,)); n(F, )) is the usual self-energy operator" in momentum-energy space for a homo-
geneous electron ga.s evaluated at E = p„(n(F, )) with density n(r, ), i.e., the corresponding Fermi vector
is

k, (F„)= [3~'n(F,)]'".
Then noting that the r, dependence is periodic in the lattice and thus may be expressed as a courier
series,

M(p, v„(n(r, ));n(F,)) =5-,;-M'(p; 6")exp(iG". F ),

it is straightforward to show that

l

(P, pl &~I+,);)= 2 &-,; *(v'k) M' %+;G'-6 —v„(6' —6) .
O', (

(24')

Equation (24) is completely general; however, M(p, E; n(r, )) is, in general, very complicated" so that
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we must make a, definite approximation forS ft p, E; zz(r, )). We choose the random-phase approximation
(RPA) for Eq. (21) so that

M(p, Zz„(n(r, )); n(r, ))= If „tp; n(r o))+ $1RpA(p, Zz gn(r, )); n(r, )),

where M „ is the Fock exchange:

'k k

m 2Pk„. k„, -p

MRpA is given by (see, for example, Hedin")

e "F zfq It" l1 —(p/kz. —2q)'] +16y 1
m'p o q Jo [1 —(p/k, :+2q)']'+ 16y' e(q, zy

(27)

and Zz, = k'k F'/2m, with kF defined in Eq. (22).
The consistent approximation for v„,(r), defined

(27') can easily be shown to be

z, „,(r) = Sf „tk „-;n(ro))+ Sf RpA(k F po' n(ro)).

To avoid getting into a complicated band-struc-
ture calculation a simple cubic lattice was cho-
sen (cube edge zz) and all the Fourier coefficients
in Eq. (16) were set equal to zero except for the
first-nearest neighbors. The resulting pseudopo-
tential is

2m 2m 2m
V (r) = 2V, cos —x+ cos —y+ cos —s

r (29)
0 Q Q

(the three-dimensional Mathieu potential) which
makes Eq. (6) trivial to solve.

A variety of strengths for the Mathieu potential
(different V, 's), and a range of mean densities in
the metallic regime have been considered. For
each of these strengths and densities we have cal-
culated the FS for the local theory and the effect
of the nonlocal theory at a number of points on

by 5E„,(zz)!6zz, when z)f is approximated by Eqs. (25)-

(26)

! the FS. The tendency in all cases seems to re-
duce substantially the radial distortions of the FS.

An example that was examined in detail is dis-
played in Fig. 1, where the spherical Fermi ra-
dius is denoted by K, and the corresponding Fer-
mi energy &0=8'K,'/2m. To simulate a physical
situation somewhat similar to the alkali metals
(e.g., Li), the lattice parameter, mean electron
density, and strength of the pseudopotential were
taken to be K„=0.6(w/zz), r, =- 3, and V, = ~2 c,. A

complete mapping of the radial distortions in the
(0, 0, 1) plane for the local and the nonlocal theo-
ries is plotted in Fig. l. As clearly seen, the
nonlocal effects are very large.

We want to thank Miss C. Ravitsky for critical
comments on the manuscript and Miss Kate Birk-
inshaw for typing the manuscript.
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FIG. 1. The percentage of Fermi-surface distortion
in the (0, 0, 1) plane of a simple cubic metal: a, local
FS; b, nonlocal FS.
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On the basis of x-ray monodomain and powder patterns, the structure of new identified
terephthal-his-butylaniline phases is described. These phases present a relatively high
degree of order and appear as intermediate states between the smectic mesophases and

the crystalline state.

TBBA (terephtal-his-butylaniline) is known to present four stable liquid crystalline modifications,
three of them being smectic mesophases: S„, S~, S~.' Recently, it has been pointed out" that two
metastable phases appear when the S~ phase is cooled below 84'C, and before reaching the crystalline
state. Moreover, we have identified two different crystalline states. The various transitions are
shown here:

.z'C )
VII =

113 C, 144 C 172 C 200 ~. 236 ~
~

)f 8"c

The different phases have thus been classified:
TBBA I is the isotropic liquid and TBBA IX the
low-temperature crystalline phase. The struc-
ture of TBBA V has already been described in a
previous paper' and it appears to be very simi-
lar to the structure of some of the plastic crys-
tals: In short, no long-range order exists in the
direction of the molecular axes; however, each
smectic layer is relatively well ordered and the
mass centers of the molecules build a "local"
monoclinic lattice, ' with the c axis parallel to the
molecules and a centered g face. It has also
been shown that the difference between the two
reticular spacings (110) and (200) is, in fact,
very small, and the intersections of the molec-
ular axes with a plane perpendicular to their
directions approximately form a hexagonal lat-
tice. From this experimental observation, and
since a critical change in the lateral order of the
parallel adjacent molecules occurs, ' it was sug-
gested that the transition from the solid phase
into the S~ phase was directly connected with a
correlated motion of the molecules around their
long axes. This motion, which explains the
pseudohexagonal symmetry, has recently been
observed in the S~ phase by means of NMR ex-

pe rim ents, '"

In this Letter, we report new results concern-
ing the structures of TBBA VI and VII modifica-
tions, yielded by x-ray experiments which were
performed by using both powder and single-do-
main samples, It was relatively easy to obtain
single domains of the different phases: A single
crystal of the crystalline phase VIII, at room
temperature, was progressively transformed in-
to a single domain of modifications V, VI, VII,
by successive heating and cooling.

Powder patterns were recorded by using a
Guinier camera equiped with a heating stage' and
a focused monochromatic beam (crystal-reflected
Cu A'o, radiation). The results of the analysis of
the powder patterns performed with a Joyce mi-
crodensitometer MK III C are given in Fig. 1.

The main results are here reported: (a) The
crystalline state is characterized by a large num-
ber of diffraction rings and mostly by large-angle
rings which do not exist in patterns correspond-
ing to the phases V, VI, and VII. The three
phases present a "local" order rather than a long-
range order. (b) These rings have been indexed
on the basis of a monoclinic lattice suggested by

3Q1


