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The superconducting phase transition is predicted to be weakly first order, because of
effects of the intrinsic fluctuating magnetic field, according to a Wilson-Fisher &-expan-
sion analysis, as well as a generalized mean-field calculation appropriate to a type-I
superconductor. Similar results hold for the phase transition from a smectic-& to a
nematic liquid crystal.

According to the BCS theory of superconductiv-
ity, the transition between the normal and super-
conducting states of a metal is a classical sec-
ond-order phase transition. McMillan' has shown
that according to a mean-fieM model, the transi-
tion between the smectic-3 and nematic phases
of a liquid crystal can also be second order, for
an appropriate range of parameters. According
to current theories of critical phenomena, fluctu-
ations left out of the classical theories do not,
generally, convert a second-order transition to
first order, although they do modify the nature
of the singularity at the critical point. -' The su-
perconductor and the smectic-A liquid crystal,
however, have the special feature that their or-
der parameters are coupled to "gauge fields"'
(the vector potential for the superconductor, the
director in the smectic-A liquid crystal) whose
fluctuations also diverge at long wavelengths. In
the present paper, we shall argue that when the

gauge fields are taken into account, the transi-
tion for a superconductor (or a charged super-
fluid) is always weakly first order. In a sepa-
rate paper' it will be shown that the "critical
properties" of the smectic-g liquid crystal are
isomorphic to those of the superconductor, so

that the transition between the smectic-A and
nematic phases should also be at least weakly
first order in all materials.

Roughly, the driving force for the first-order
transition is the partial expulsion of the "black-
body radiation, " (or of the director fluctuations)
from the low-temperature phase. The "size" of
the first-order transition is at most a few mi-
crodegrees for superconductors, but should be
of order 10 '- K or larger for the liquid crystal. '
Our arguments for a first-order transition have
been obtained both from a generalized mean-field
approximation appropriate to a type-I supercon-
ductor, and from the renormalization group
methods of Wilson, evaluated to first order in ~,
the deviation of the space dimensionality from
four. ' We have also considered a generalization
where the order parameter is a vector with n/2
complex components. We find that for sufficient-
ly large n a critical-point transition can exist
but with exponents that are greatly affected by
the coupling to the gauge fields.

According to the Ginzburg-I. andau theory, one
may define a combined "free-energy functional"
for the superconductor and the electromagnetic
field in the form

Z4, A1= J d'rb
I
pl'+ 2h I yl'+&I (v iq A)pl'+—(8m' ) 'Q (v.A; —v, A )'I.

In Eq. (I), p, is the magnetic permeability of the normal metal, which is always very close to unity,

q, =2e/Sc, and a =a'(T —T,)/T, The parameters . a', b, and y may be considered temperature-depen-
dent for T near the transition temperature T,. %e work in the Coulomb gauge where V'- A =0. In addi-
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In the case of a good type-I superconductor, we
shall ultimately be interested in I,T —T, I of the
order of 10 ' K. Since the right-band side of (3)
is typically of order (T,/F. ,)' = 10 ", we shall
ignore fluctuations in g:, and assume that y is a
constant. We can now define a free energy F(t/i),
as a function of the single variable (I, by taking
the trace over the configurations of the vector po-
tential:

-s(()/r fd{A)e s((. A }/r-'

It follows from (1) that

I

=a l(l I+b I (( I3+q, 'y I/i(/1')(„
j. dF

(5)

where 0 is the volume of the system, and (/4')&

is the expectation value of lA(r)'I when g has the
given (constant) value. Since (1) is quadratic in

A, this expectation value can be eva. luated by the
equipartition theorem. One finds

(A~) Tcuo
8~'

8md'k
i&A + s

(6)

where A, „ the inverse of the London penetration
depth, is given by

If ~ y j' is sufficiently small so that A, «A, Eq.
(6) becomes

tion we note that (1) is only valid for long-wave-
length variations —in particular we consider only
Fourier components of g and A with wave vector
k less than a cutoff A, which is normally taken
to be the inverse of the zero-temperature coher-
ence length in a superconductor. If (I(r) and A(r)
are treated as fields in classical statistical me-
chanics, the relative probability of finding a giv-
en configuration {(((r),A(r) j is given by

g(g A) e E(4, A }/T

This probability is clearly maximized by choos-
ing A=O, and f independent of r. Moreover, for
T & T, we maximize (P by choosing g = 0, while for
T & T„we have I (} I' =

I a I /b & 0.
According to the "Ginzburg criterion, ""fluctua-

tions in g should have no significant effect on the
thermodynamics of the transition, except in the
region

LT —T I 1 O' T,'

When (8) is inserted in (5), the first term of (8)
leads to a slight renormalization of the Ginzburg-
Landau T„which is not very interesting. The
second term of (8), however, leads to a term in

F((|) which has negative sign and is proportional
to I ( ~'. Such a term inevitably leads to a first-
order transition, as F develops a minimum at a
finite value of y when the coefficient of the quad-
ratic term is still slightly positive. Let us define
the size of the first-order transition, A7"y as
the ratio of the latent heat L to the jump in spe-
cific heat, AC~=(a')'/bT„predicted by Ginz-
burg-Landau. %'e find

1~8&T 3+3q Ru 3/aib 8 g T K
6 (9)

In the last line, I(, is the ratio of the London pene-
tration depth to the temperature-dependent co-
herence length in the superconducting state, a
number of order 0.02 for the best type-I materi-
als. The theoretical limits of metastability of
the normal and superconducting phases, T„~ and

T,~, lie below and above the first-order transi-
tion temperature by the amounts AT, /2 and b,T,/
16, respectively. Just below the transition, l(l I'

is equal to a'AT, /b.
According to the BCS theory, Eq. (9) can be ex-

pressed as

where a, f f, the coefficient of the quadratic term
in F((t), is equal to a'(T —T„*). The value of
47tly I just above the first-order transition is
found to be -', ((W2, which is small compared to
unity for a type-I superconductor.

The case of a type-II superconductor is consid-
erably more complicated. Here the size of the
first-order transition mill be equal to or smaller
than &,T„and fluctuations in g cannot be neglect-

with temperatures in kelvin, g, in oersteds, and

$, in micrometers. For aluminum, which ap-
pears to be the most favorable case, we find AT,
=7 pK, using the tabulated values T, =1.19 K,
B,(0) =99 Oe, $, =1.6 um. Note, however, the
extreme sensitivity of the estimate to the as-
sumed value of $,. It is not clear whether it is
possible to prepare a sample with the homogene-
ity necessary to observe this first-order transi-
tion.

A useful self-consistency check on the validity
of neglecting fluctuations in P is obtained from
the fluctuation diamagnetism above T, '.

—4((}('=—,
' q'oT(y a/. )('(",
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ed. The problem is then too complicated to solve
directly by any known technique. We are forced
to consider generalizations of (1}to an n/2-di-
mensional complex order parameter and/or to
noninteger spatial dimensionality d, and study
the behavior of the transition in the limits d-4
or n- ~.

The limit d —4 can be studied by a generaliza-

tion of the Wilson-Fisher recursion relations. '
We consider repeated transformations in mhich
we integrate out fluctuations mith wave vectors
between A/B and A, rescale all lengths by the
factor B ', and rescale p(r) and A(r) by factors

PP)(&-2+ ~) and B(l/2)(d-2+ )&) respectively
result, correct to first order in e =-4 —d, is a
new free-energy functional of the same form as
(1), but with renormalized parameters'.

a, „=B "fa, +(b, /y, )(4v) (n+2)[2A2(l —B 2) —a, lnB]+q, 'p, y, , (3/4m)A'(1 —B ')j,
b„,=B' '"[5,—(b, '/y, ')(n+8) 1nB/16v' —12q, 'p, 'y, 'ln, B],
'y ( ~ q

= B y ( [1 —q( p ( 3 1nB/2 ll ]~'

I/p, +, = (B "&/g, [1+q,'g, n lnB/12w],

B(i i2) (~- n~)&~ J+I ~) ~

(Here we have assumed that a, 5, and q'p are all of order e, and have set T, =l.) For n&365.9, (12)
has a fixed point mith

q= —18~n '+O(~'), (13)

(14)

and finite positive values of q'g/~, 5/ye, and —a/yA'c. The exponent v may be calculated in the usual
way, and one finds

1/v =2 —~c(n+8) '[n+2 —216n '+(n+2)n '(n' —360n —2160)'"]+O(e'). (15)

[Equations (13) and (15) may be compared with
the results for the uncharged case (qo=0):
= O(e') and v, ' = 2 —e (n + 2) /(n + 8) + O(e'). ] The
critical exponents o., P, y, and 6 are determined
from q and v by the usual scaling laws. Further-
more, (14) implies that the observed magnetic
permeability g above T, goes to zero as (T —T,)"
—t ', whenever a critical point exists, as pre-
dicted from the simple Ginzburg-Landau equa-
tions. '

For n &365.9, there is no fixed point for non-
zero charge. In particular, p, /e becomes nega-
tive for sufficiently large l and approaches —~
as l —~. This must be interpreted as signaling
a first-order transition for n &365.9 and e suffi-
ciently small.

The phase transition can also be studied in the
limit n —~ for fixed dimensionality d, by methods
similar to those employed in the neutral case."
Qne finds that a critical point can exist in this
limit with

! must always be first order. Although n, no long-
er will be 365.9 at d =3, it seems most unlikely
that the critical value could be as small as 2, the
value of n for the superconductor. We therefore
conclude that the superconductor mill always have
a small first-order transition in three dimen-
sions, even for the type-II case." We expect
that for large ~, the "size" of the first-order
transition should have the form

T constx E T K- I

where the "crossover exponent'"' q is equal to
ev, (=0.6V for d =3, n =2).

The research reported in this Letter was be-
gun while the authors were participants at the
Aspen Center for Physics. We are very grate-
ful to the staff of the Center for their hospitality.
We also wish to thank J. M. Rowe11., P. E. Cladis,
and M. E. Fisher for helpful discussions.

v = 1 —9.72n '+ O{n '),

q = —4.053n ' + O(n '), for d = 3. (16)

Presumably, at d = 3 there mill again be a criti-
cal value n, such that for n &n„ the transition
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For a number of liquid sodium-cesium alloys the electrical resistivity p has been
measured as a function of temperature T in the range 50-300 C. As a function of the
cesium concentration c, {Bp/BT)p exhibits a distinct minimum for c =0.6, which gradual-
ly disappears at higher temperatures. This minimum is related to the results for the
resistivity at high pressure recently obtained by Tamaki, Ross, Cusack, and Endo.

Measurements of the electrical resistivity p
of liquid sodium-cesium alloys as a function of
the temperature T have been communicated re-
cently. " It was demonstrated that, at 100'C,
(sp/sT)~, plotted as a function of the atomic con-
centration c of cesium exhibits a pronounced rel-
ative maximum for c -0.60. The maximum was
ascribed to an ordering phenomenon, more par-
ticularly to the formation of a compound Na, Cs,
in the liquid at temperatures close to the melting
point. The existence of such a compound was
strongly suggested by the results of Kim and
Letcher' on ultrasonic absorption. This ordering
was supposed to disappear gradually at tempera-
tures above the melting point, thus giving rise to
a larger value of (sp/BT)~ in that particular tem-
perature range. The maximum was then expect-
ed to disappear at higher temperatures.

In order to check this supposition, the rnea-
surements were extended towards higher temper-
atures, and, for some of the alloy compositions,
also to lower temperatures. The experimental
equipment used for the measurements above
100'C was basically the same as the one described
by Hennephof, van der Lugh, and Wright, ' but
the whole system was made of stainless steel.
The results are shown in Fig. 1.

Fair agreement with earlier results has been
obtained. ' ' Furthermore, it is evident that it
is not the maximum of (sp/sT)~ that disappears
at higher temperatures, but rather the minimum:

(Bp/ST)p varies strongly as a function of temper-
ature in this part of the concentration range,
whereas for c& 0.25, (s'p/BT')~ almost vanishes.
This is in contradiction with our former supposi-
tion.

It is interesting to compare our results on the
temperature dependence of p with those at high
pressure obtained by Tamaki et al. ' for the same
alloy system. According to their measurements,
(sp/sp)„, plotted as a function of c, changes sign
twice. It is negative for c&0.25 and for c&0.80
(as it is for all pure liquid alka. li meta. ls except
Li), whereas it is positive for intermediate con-
centrations. The central composition range for
which (sp/sp)r &0 corresponds fairly well to the
valley found for (sp/sT)~. The two quantities are
related by

For the pure alkali metals except Li, (sp/sT)„,
(sp/BT)~, and (sp/BT)~ are positive quantities
and (sp/sp)r is negative. ' " Consequently (Sp/


