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Parametric Up-Conversion of Langmuir Waves into Transverse Electromagnetic Waves
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A mechanism is given for the generation of a transverse electromagnetic wave by a
finite-amplitude Langmuir wave of lower frequency. The relationship of this effect to
the oscillating two-stream instability is indicated and the conditions for its observation
experimentally are discussed.

The parametric domn-conversion of a finite-amplitude electromagnetic wave into a Langmuir wave
and an ion-acoustic wave is well known. ' ' Similarly, a finite-amplitude Langmuir wave can decay
into a transverse electromagnetic wave and an ion-acoustic wave. A necessary condition for this
latter process is, of course, that the frequency of the Langmuir wave be greater than the frequency
of the transverse wave. However, there is another possibility which does not seem to have been con-
sidered. This is the conversion of a Langmuir wave into a transverse electromagnetic mave of higher
frequency. ' This frequency-up-conversion process can be described as the inverse oscillating two-
stream instability. In order to describe the effect I use the equations describing the nonlinear inter-
action between coherent Langmuir, transverse, and ion-acoustic waves, derived elsewhere'.
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where AL, A ~, and A., are the slowly varying
amplitudes of the Langmuir, transverse, and
ion-acoustic waves. The frequencies of these
waves (which are always taken as positive) are
denoted by ~L, ~~, and ~„respectively, and
the wave vectors are k L, k„and k, .' AL' de-
notes a Langmuir wave propagating in the +k&
direction. The remaining amplitudes have sim-
ilar meanings. jAL'i' gives the total energy in
that mode and so on for the other amplitudes.
v, is the electron-ion collision frequency, v,
simulates the damping of the ion-acoustic wave,
and 5 =-~1- ~ L. The coupling coefficients are
given' by
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with y, the ratio of specific heats for the elec-
tron fluid, m, the ion mass, n„ the equilibrium
density of the plasma, vr, the electron thermal
velocity, c, the ion sound speed, e the proton
charge, and e, the dielectric constant of free
space (mks units).

The polarization of the transverse wave is

E = (0, E, , 0), B = (B„,0, 0), kr = (0, 0, kr),

and I @1 i « Ik L ~ so that k, = —k L, and I assume the
Langmuir and ion-acoustic waves propagate in
the y direction (or very nearly) If the fre. quen-
cies of the waves were all large compared with
the rate of change of the slowly varying ampli-
tudes and with the mismatch between wave trip-
lets, then these six equations would decouple
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into two sets of three. However, since the ion-
acoustic frequency is very much less than the

frequencies of the Langmuir and transverse
waves the allowance for a mismatch which can
be comparable to the ion-acoustic frequency re-
sults in all six waves being coupled.

If one takes the pump wave to be a transverse
electromagnetic wave and assumes that ~A~'~

» ~A L'~ and IA~'I » ~A,
'

~, then one must solve

Eqs. (1), (2), (5), and (6). When ~A, , '~=~A, ~,

these equations have been shown' to give rise to
the dispersion relation for the decay and oscil-
lating two-stream instabilities previously de-
rived by Nishikawa. "

Consider the case when the pump is a finite-
amplitude Langmuir wave. %e now assume that
IAL'

I » lA~' I and IAL'
I » lA,

'
~ and must therefore

solve Eqs. (3)-(6) where AL' is assumed to be
constant. Under the transformation
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Eqs. (3)—(6) become
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wh~~~ yr=k&, &'~, /&r'=-,'&, and y, is the damping constant for the ion-acoustic wave. l,ooking for
solution of the form exp(-ivt) one obtains the following dispersion relation:
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where Q = ~+ 5. The simplest case to analyze is when the Langmuir wave pump is a standing wave,
i.e.,

AL' ——AL = AL.

Neglecting y,
' in comparison with ~,', Eq. (11) then takes the same form as the equation describing the

oscillating two-stream and decay instabilities, "
(Q —5 + iyr}(Q + 6 + i yr) (0 —+,' + 2iy, 0) —K(u, 5 = 0, (12)

where K = 4cL, cL~ ~A L)', For 5 «0, i.e., ~ L )~ ~,
one has growing waves. These solutions corre-
spond to the usual decay instability of a longi-
tudinal wave into a transverse wave and an ion-
acoustic wave. Following Nishikawa' one can
obtain the minimum threshold for this case:

K = 2yqcu

Using the expressions for c L, and c L ~ and the
fact that
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By analogy with the oscillating two-stream so-
lution we now have the additional possibility that
the Langmuir pump wave can excite transverse
waves of higher frequency than the pump fre-
quency. Since ~ -=~ ~ —~ L, this case corr esponds
to 5 & 0, and we find the threshold condition from
Eq. (12):

K = ( 6 + yr )u), /5.

The minimum value of this expression occurs

, z',
pyg, y, kgv ~,

we can express the threshold condition in terms
of the longitudinal electric field F. '.
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For the standing-wave pump considered above,
the ion wave is excited at zero frequency and
the transverse wave is frequency shifted to the
Langmuir-wave value. The situation is different
for a traveling-wave pump, however.

The dispersion relation for the traveling-wave
pump is obtained from Eq. (11) by putting A,
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= 0. The equation then becomes

(n —5+ iver)(Q' —u),'+ 2iy, fl) —-K(., = 0. (18)

Note that the dispersion relation is now cubic
(rather than quartic). This is because the A z
mode is no longer excited when. 4& =0. Equa-
tion (18) does not have any purely growing solu-
tions. However, for ReQ, &0 instability can still
occur for both 6&0 (decay instabilities) and 5&0
(corresponding to the purely growing solution
of the standing-wave case). When yr«y„ the
instability thresholds are given by

K=4@,yr~5~/a, , 5&0, (19)

(20)

K =4y, y, 5&0,

K =4y, y~, 5) 0,

(21)

(22)

The decay and up-conversion instability thresh-
olds are equal and independent of 61

Finally, solving Eq. (18) well above threshold
where damping terms can be neglected, I find
for K= su, ', Q =(u, (- 1.08+0.4i), 5= —(u„and
0 = ~, (- 0.55+0.156i), 6= 0.1~,. These solutions
result in the A, ' and A, waves becoming identi-
cal. For the decay instability '.he ion wave pro-
pagates with velocity 1.08c, and for the up-con-
version instability the ion wave propagates with
the velocity 0.55c, . In both cases the frequency
of the transverse wave excited is shifted so that
the frequency-matching condition (energy con-
servation) is satisfied.

The effect considered in this Letter should be
more easily observed than its analog —the oscil-
lating two-stream instability~or the following

K= 26~„6)0,

where I 51&(2yr/y, )' 'w, . The threshold for the
decay instability 5&0 in this case is much lower
than the up-conversion instability. Both instabil-
ities give rise to propagating ion waves.

Next consider the case y~-~, The instability
thresholds are now

reasons. Firstly, since an electromagnetic
wave is generated it could be detected outside
the plasma (the electromagnetic wave propagates
approximately perpendicularly to the Langmuir
pump with its electric field vector in the direc-
tion of the pump wave). Secondly, for the case
of a traveling-wave pump the low-frequency
acoustic waves have finite frequencies and could
be detected within the plasma. In this case the
frequency of the electromagnetic wave is differ-
ent from that of the Langmuir pump. Thirdly,
it should be easier to excite a Langmuir pump
wave having a lower frequency than the trans-
verse mode than vice versa.

For a standing-wave pump the up-conversion
process has a lower threshold than the decay
process when ~,' &y, y~. For a traveling-wave
pump the thresolds are equal when y~-~, . Since
the up-conversion process has a greater range
of the dispersion curve available to it this effect
should occur preferentially under these condi-
tions.

The mechanism for the generation of electro-
magnetic radiation considered in this Letter may
be important for any situation where a supra-
thermal level of Langmuir waves is built up,
e.g. , in laser fusion, electrostatic shocks, and
turbulently heated plasmas.
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