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tions and CriticaE Phenomena (Clarendon, Oxford,
England, 1971).

'The authors thank G. Stell for suggesting that the
rectilinear diameter of a binary liquid system should
be analyzed in terms of volume fractions instead of
mole fractions.

If the rectilinear diameter in terms of volume frac-
tions is as given in the text, then its slope in terms of
mole fractions is of the form (8/Bt)~(X'+4' ) =3,05t
+0.0012t ~ ' for the present case, where 1-o.' = 0.86
= f. Even though t 8 diverges faster as t 0, the co-
efficients make this term negligible even in the limit

of the present resolution. In fact, an analysis of the
diameter in terms of mole fractions apparently gives
the same fit as for volume fractions with b =-0.000 85,
E= 5.0, f= 0.87, (" = 5.8, h = 0.19.
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2. Additional discussion of earlier data is presented in
the detailed paper to be published elsewhere.
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A simple argument demonstrates that one should expect polar and nonpolar fluids to
have the same critical exponents.

There has been no adequate theory as yet to
cope with the critical behavior of a polar fluid,
and existing clues have been ambiguous. On the
one hand, it has been known for some time' that
if the pair potential w(12) of a system is of suffi-
ciently long range, one must expect the range to
be an active parameter in determining the criti-
cal behavior of the system. More precisely, if
m(12)-const&&r ' ' for large r (d=dimension and
a &0), then we expect the critical exponents to
depend upon m whenever a is less than a certain
value o (d), which is a bit less than 2 for d = 3."
For o -0, we further expect to recover mean-
field behavior. ' ' For polar fluids, w(12)-f(y,
8„8,)r ', where y, 8„8, are angles that describe
the relative orientation of two dipolar molecules;
thus, one might naively predict mean-field be-
havior, or at least a considerable departure
from the large-(T behavior characteristic of non-
polar molecules. On the other hand, there ap-
pears to be no compelling experimental evidence
that the critical exponents of polar fluids differ
in any substantial way from those of nonpolar
fluids. ' One would guess that the angular-depen-
dent f (y, 8„8,) must be crucial in tempering the
effect of the r ' in this connection, and the re-
sults of recent theoretical studies' of dipolar
spin systems indeed show that the angular depen-
dence reduces (but does not completely eliminate)

where P =1/kT, i = (r;, ra;) describes both the ori-
entation u; and location r; of the ith particle, and
0= fd'&u;. In general we have

+I, . .. , K) = gw, (i j)+ Q m, (i jk)+... . (1)
i& j&k

It is often convenient to further decompose each
g„ into the sum of an orientation-independent
term, call it q„(r„..., rz), and a term that in-
cludes all the ~, dependence. For example, in
the simplest case of interest, ~„=0 for n &2 and

w, (12) = q(r)+w'D(12), (2)

the effect of the long range of the potential. How-
ever, fundamental symmetry differences between
such spin systems and a fluid of freely rotating
dipolar molecules rule out the direct use of those
results in treating polar fluids.

Our treatment here begins with the observation
that the thermodynamics of a polar system can
be identified with the thermodynamics of an ex-
actly equivalent hypothetical nonpolar system
with many-body temperature-dependent forces
among molecules. ' Let the configuration integral
of the polar system of N particles be

Q = (N'0") 'J d(1) d(N) exp[-PW(1, ..., N)J,
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where r= ~r, —r, l and re~(12) is the ideal dipole term w (12) = p, , T(12)' p, , for a dipole strength p. .
Here T(12)=3(r»r»)r —T~ '. We introduce%'„(r„. .., r„) by writing

exp[-Pk~(r„. .., r„)J=Q j d tu, ' ''d &3u~exp[-PW(l, . .., X)],
so that

Q„=(N!) '
f d'r, d @~exp[-P4'~(r„..., r~)j.

We can uniquely decompose 4& into a sum of r~-body terms by writing

e„= Qq, (r, r, )+ Q q, (r, r, r, )+... ,
i&j&k

where y, =4', , y, =4, -Q;„y,(r, r, ), etc. We note that (3) is just the configuration integral of a sys-
tem with orientation-independent potential+&.

With W given by (1) and (2), direct computation gives an explicit expression for the longest-range
term of &p„ that is added to the q(r) of (2). Denoting this term as p„" we have

—Pcp„= (- 1)"(r~ —1)!(Pp' '3)" TrT "/2, (4)

where the tensor T" is the product of a chain of n tensors T.' The terms in y„not given by y„" are
both of shorter range and of higher order in Pp,

' than the term shown; for example, the full y, is given
by

—Py, = —Pq(r) + (Pp. ')'x '/3 —7(Pp, ')'r "/450+ ... .
The ~ ' term is the right-hand side of (4) expli-
citly evaluated for n =-2.

A striking aspect of the y„given by (4) is that
it has precisely the same r; dependence, and
hence range, as the longest-ranged dispersion
term that one already finds in the potentials of
real nonpolar molecules, which is also propor-
tional to TrT" and differs from (4) only in the
form of the coefficients, with polarizability e ap-
pearing instead of Pp, '!3.' Thus, for example,
the r ' term in (5) has the same x dependence as
the two-body London dispersion term. Similarly
the lang-range contribution to —Py, given by (4)
has precisely the r; dependence of the three-
body Axilrod-Teller dispersion term, etc.

In a real polar fluid, rather than one with H

given by (1) and (2), the situation remains essen-
tially the same with regard to the correspon-
dence between terms in y„and terms already
found in monatomic fluids. One finds a full set
of dispersion terms independent of p, in the y„
as well as a set of mixed (i.e. , "induction")
terms in y„arising from dipole-induced-dipole
effects. For example one finds in —P@2 the "Fal-
kenhagen term" 2ePp, ' jr ' as well as the "Kee-
som term" (Pp, ')'r '/3 already in (5). One also
expects dipole-quadrupole and other higher-mul-
tipole terms; these too can be analyzed in detail
but they are clearly of shorter range than the
terms arising from purely dipolar effects. The
key conclusion is that from no contribution to the

y„can one find terms of longer range than those

(5)

already given by the Tr T" of (4).
From these observations one sees that the

structure of the hypothetical fluid associated with
the potentials y„ is the same as that of a mon-
atomic fluid in all respects that are currently be-
lieved to bear upon critical behavior; in particu-
lar the range and symmetry of the interaction po-
tential is the same. To be sure, the y„are tem-
perature dependent, through the appearance of a
P associated with each p, '. However, the tem-
perature dependence thus introduced in each
term is analytic in P and hence can be neglected
in assessing exponents on the same grounds that
the ubiquitous analytic "background" terms in the
free energy of any system can be neglected in as-
sessing its critical singularities. Our conclusion
is that one should expect no more difference be-
tween polar and nonpolar values of critical ex-
ponents that describe thermodynamic behavior
than among their values for simple nonpolar
fluids, which we would expect to be universal for
a given d.

There still remains the question of how much
difference one should expect between the real
fluid values, the Lennard-Jones fluid values, and
the Ising-model values of the exponents. We do
not attempt to answer that here, but from our
above remarks one sees that the presence of the
n-body dispersion terms for n ~ 3 represents the
major difference between argon, say, and the
Lennard-Jones fluid. This suggests that an in-
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vestigation should be made to determine whether
these terms can affect critical exponents; to our
knowledge no such investigation has so far been
made. '

In conjunction with our arguments, the work of
Fisher and Aharony, ' using field-theoretic tech-
niques of Wilson, reveals an interesting differ-
ence in the role of dipolar forces in fluid and

spin-system critical behavior. In the Wilson ap-
proach one customarily begins by replacing the
statistical-mechanical system of interest by a
field theory with a Lagrangian into which one has
built what appears to be all the active variables';
one then invokes a universality hypothesis to ar-
gue that nothing important has been left out. On
this somewhat coarse-grained level of scrutiny
one acknowledges no difference between a sim-
ple fluid and the Ising model. Hence, from our
argument, one will find no difference at all be-
tween the polar fluid and the Ising-model expo-
nents on this level of description, whereas one
dc' find' a small but unambiguous difference on
this level between the exponents of the polar spin
system and the Ising model with short-range in-
teractions. To go further with such an approach
and probe the subtle differences between a fluid
and the Ising model will require considerable
further effort. " Thus it seems, paradoxically,
that it is easier to argue that the exponents of
real polar fluids and real nonpolar fluids will be
the same —despite the enormous differences in
the range and symmetry of their Hamiltonians—than it is to assert with assurance that the ex-
ponents of argon and the Ising model (or a Len-
nard-Jones f1uid, for that matter) should be the
same.

In closing, we note that the hypothetical fluid
with potentials y„affords a convenient means of
defining a set of exponents, such as q and v, that
describe the correlation in such a fluid. These
exponents automatically incorporate the correla-
tions arising from ensemble averaging over the
complicated orientational dependence in the cor-
responding polar fluid.

We are indebted to G. S. Rushbrooke and Loup
Verlet for stimulating discussions concerning the
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