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~3We adopt here the standard definitions of homoge-
neous and inhomogeneous broadening. For homoge-
neous broadening the lifetime of the molecular state is
limited by the broadening mechanism. Radiative broac(
ening is of course homogeneous, and inezastie colli-
sions, in which the quantum state of the molecule is
changed, also serve to broaden the line homogeneously.
On the other hand an inhomogeneously broadened line
is one in which the center frequency of the oscillators
is distributed over a line profile, and the lifetime is
the same throughout. Doppler broadening is inhomoge-
neous and elastic collisions, in which the phase of the
oscillator is interrupted but the quantum state is un-
changed, also result in inhomogeneous broadening.
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The dielectric function for the two-dimensional guiding-center plasma is discussed.
An error is noted in a calculation based on the Vlasov equation by Lee and Liu and an
improved derivation is given using the Kubo formalism. Although this new dielectric
function embodies the correct screening effect, it does not (contrary to earlier sugges-
tions) essentially change the Taylor-McNamara result for the diffusion coefficient.

The two-dimensional guiding-center (2D gc)
plasma' (in which charged filaments are aligned
with a magnetic field B and move with the veloc-
ity Ex 8/B') is important for the study of plasma
diffusion due to thermal vortices. ' ' In such cal-
culations the dielectric function is often invoked.

In a conventional plasma the dielectric function
is obtained from the linearized Vlasov equation
by integrating the effect of the perturbing poten-
tial Vy- (Bf'/Bv) along noninteracting, unper-
turbed particle orbits. ' This yields the plasma
response p(x, t), a.nd the susceptibility X (k, v) is
defined by

4m p(k, ~) = —k')( (k, (u)(o(k, (u).

Then the Vlasov-based dielectric function is

ev(k, (u) = 1+Xv(k, (u).

For the 20 gc plasma the analog of the Vlasov

equation is

gI' F xB
Bt B' BR

and the dielectric function would be obtained by
integrating

(Bx Vy/2p). BF,/BX

along the noninteracting unperturbed particle or-
bits. However, these orbits are of zero length
since in the absence of interaction each particle
remains at rest. Furthermore, for a uniform
plasma BFO/BX =0, Fo+=Fo, and the perturba-
tion can produce no charge imbalance. Hence,
for the gc plasma the Vlasov-like approximation
yields only Xv=0 and ev=1.

In an attempt to obtain an improved value for
e, Lee and Liu4 considered a plasma with a finite
gyroradius g and invoked the now well-known
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device of introducing diffuse orbits in place of
the precise free orbits. This is intended to sim-
ulate the effect of particle interactions. On tak-
ing the limit a -0 one then finds for the dielec-
tric function of the gc plasma

e(k, &u) =1+(kD'/k') [1 —i~/(i~ —k'D)],

where the diffusion coefficient D arises from the
smeared-out orbits, which introduce a factor
- exp( —k'D7) into the orbit integration, and kD '
is the Debye length. Because of the screening ef-
fect embodied in (1) a calculation using this di-
electric function leads to a finite value for the
diffusion coefficient, unlike the original calcula-
tion of Taylor and McNamara' in which D is log-
arithmically divergent at long wavelength.

However, it is clear that the introduction of
diffuse orbits into the calculation cannot of itself
generate a nonzero y for the gc plasma, since
one still has BF,/BX=0 and F,'=F, . In fact it
appears that the nonzero value found by Lee and
Liu4 is a consequence of treating the unperturbed
distribution function as constant during the orbit
integration. This is inconsistent with the intro-
duction of diffuse orbits. [Dawson and okuda"
have also pointed out that according to (1) the
damping of normal modes, defined by e(k, ~) = 0,
would be y = (k'+kD')D, whereas their numerical
simulations show that y~ k' even for k' «kD2. ]

Clearly, the Vlasov equation is not a suitable
starting point for the calculation of c(k, &u) for a
gc plasma. However, there is a more accurate
procedure, due to Kubo, "into which the concept
of orbit diffusion can be introduced naturally and
consistently. The dielectric function thus calcu-
lated differs from (1) and yields a damping rate

It also yields the correct thermal spectrum
&E,') and the correct plasma screening (both of
which are known independently from thermody-
namic considerations), yet it leaves the diffusion
coefficient essentially unchanged from the Tay-
lor-McNamara value.

Although unconventional, the gc system can
nevertheless be described in Hamiltonian form.
The Hamiltonian function is the interaction ener-
gy Qe, e, In I r„.1, and the Cartesian coordinates

x, and y,. are, apart from scale factors, canoni-
cally conjugate to one another. For brevity the
full set of coordinates is denoted by {X,j. Then
the many-particle distribution function F{X,]
obeys the Liouville equation

8E/ei = [H, F'),

and the linear response to an external potential
e ' "'y (x) is given by

sE"'/st = [H» E'i) ]+,' ~[@, FO] (2)

&B)= fB{X}F {X,}IId'X„
so that

&B&=e' '[-P&BC), +i~Pf „e' '&B(0)C(s))ods],

where & )0 denotes an average over the thermal
distribution:

&Z& =—)exp(- pH {X,j)Z{X,}gd X,

To find the dielectric constant it is now only nec-
essary to take

4 {X&}= p ~ +& e
&
exp[- ik X;(t)] = p» p ~ (i),

representing a single Fourier mode, and to de-
termine the resulting induced charge by taking

B{X,j= p-„=g, e,. exp(+ ik. X,) .

whe re 00 is the Hamiltonian of all the inte rparti-
cle interactions and 4{Xj is the sum of all inter-
actions with the externa/ potential. The function
E {X,j is the thermal-equilibrium distribution
exp(- pH, ), so that Eq. (2) becomes

BF ' /st —[H F ' ]=pE [Ho, C']e'

Recognizing that the left-hand side of this equa-
tion is the derivative along interacting orbits and
that F, is constant along these orbits,

E ' {X;j=—PEO@'e' '+iuPEof e' '4(v) dr,

where C(r) -=4{X,(T)j and {X,(g)j denotes the posi-
tions at time 7 of interacting particles which ar-
rive at {X,j at time t.

The average change in any function B{X;jcaused
by the external potential is

py(~) =P„(~)[-P&p,(0)p„(0)),+i~Pf „e' '&p „(0)p„(s)),ds].

It is now important to recall that y is the external potential and not, as in the Vlasov calculation,
the total potential. Hence, if we define an external susceptibility by

4n p(k, &u) = —k'y (k, ~)P(k, cu),
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the dielectric function is

e (k, ~) = [1 —
lt (k, &u)] ',

with yT given by

x (k, (u) =(4w/k')[P(lp„'I&, —iu)P f „e' '(p „(0)p~(s)&,ds]. (6)

The distinctive feature of (6) is that the integration is along interacting orbits whereas X was ob-
tained by integrating along free orbits. If one were simply to neglect interactions, then it is true that

y -X, but one does not thereby recover the Vlasov dielectric function since eT=1/(1 —AT) but ev= (1
+y ). The correct method of passing from the Kubo form to the Vlasov limit has been discussed by
Balescu" using diagrammatic techniques.

The thermal spectrum (i p„'i&, is given by ne'k'/(k'+OD') and for the gc plasma the correlation func-
tion

(p „(0)p„(t)&,=g;,(e; e,. expj-. k. [X;(0)—X,(t)] j&,

is determined by the fluctuating electric field (through the velocity E xB/8'). In the model of Taylor
and McNamara it is assumed that these fluctuations are normally distributed. Then

&p „(0)p „(t)&,
=

& I p, I'&, e p[—O'R (t)],

where R(t) is the rms particle displacement in time t This. has been calculated numerically' but is
approximately R =Dt. It is clear that the correlation function must be of the form (7) whenever the
dispersion of particles can be described as diffusion.

Using this approximation the dielectric function for the gc plasma is given by

1 k, 2 k'D
E(R Ul) IP +AD Efd+k D)

(7)

(8)

This has several noteworthy features. Firstly, the damping of normal modes is yT, =O2D. Secondly,
the static screening factor e '(k, 0) is given correctly as e '(k, 0) =k'/(k'+kD'). Thirdly, the deriva-
tion of (8) ensures that, in conjunction with the fluctuation-dissipation theorem

(IE'(k, ~) I&/8& = (&T/2&) 1m[(u&(k, &)] ',

it will yield the correct thermal spectrum, i.e.,
(IE„'I&/8~ =,'~rk, '/(k'+ k,'). (10)

We must now consider the effect of the dielectric function (8) on the calculation of the test-particle
diffusion coefficient. This can be written'

D = (c'/8') Z (IE'(k, v) l&J dr(exp(i~T +ik x(7)&,
, Q)

where it has been assumed, as usual, that aver-
ages over the plasma ensemble and over the test or
particle are taken separately. Treating the test-
particle dispersion in the diffusion approxima-
tion, it is found that

c' dk k'
282~ Q2 p2 +p 2 (14)

D=—,. Z&IE(k, )I&..., , . (12)
ki(d

The frequency-dependent fluctuation spectrum
(IE(k, ~) I'& can be found from the dielectric func-
tion by the fluctuation-dissipation theorem (9);
then

jp
2

)p 2'
D 2 2 d kd(d 2 2 2 4

This result retains the long-range logarthmic di-
vergence of the original Taylor-McNamara re-
sult, despite the fact that the dielectric function
embodies the plasma screening effect. In fact,
the diffusion coefficient given by (14) differs by
only a factor W2 from the original result. ' A
similar modification was noted by Montgomery"
and has been incorporated in some calculations. '
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Conditions of global energy and pressure balance are applied to a cylindrically symme-
tric plasma column having a Be confining field and a &» stabilizing field, as exist in sta-
bilized z pinches and tokamaks. In the process of producing stable configurations the
plasma pressure due to Ohmic heating during magnetic field diffusion may become too
large for the confining field to contain.

In fusion research there is revived interest in
z pinches having magnetic field configurations
with diffuse profiles since stable configorations
exist which confine high-P plasmas according to
magnetohydrodynamic (MHD) theory. ' a Experi-
mentally the poloidal field diffuses rapidly and
most of the profiles now being considered have
longitudinal currents nearly uniform inside the
pinched-plasma column. In many experiments
the plasma Ps's are high. The production of
stable configurations would be greatly simplified
by operating at lower values which by MHD theo-
ry would have a greater margin of stability. At-
tempts, however. , to lower the plasma energy
density have not been completely successful.

These considerations suggest that there are
limitations on Ps due to the processes involved
in setting up the plasma and field profiles. In
particular, the plasma is Ohmically heated dur-
ing the diffusion of the poloidal field. For an in-

compressible, constant-conductivity, plane con-
ductor excited by a step-function current the re-
sult' that the local Joule heating is greater than
the field energy density led early workers on the
diffuse pinch to the prediction' that Ps & —, without
losses. These considerations led to the expecta-
tion that unless special measures were taken the
Joule heating would raise the P above the low val-
ues then believed necessary for stability. A
more detailed cylindrical calculation' on the in-
compressible model gives heating corresponding
to P s &2, at the time the field has diffused so
that it is uniform within 10% across the conduc-
tor, for all values of the current rise time. This
result indicates the possibility that in the forma-
tion of a z-pinch plasma, heating by diffusion
prevents magnetic containment by exceeding pres-
sure-balance conditions as well as those for sta-
bility. This paper treats this problem using gen-
eral energy- and pressure-balance conditions
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