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The volume dependence of the Raman frequencies ~; in O'-N& has been measured yield-
ing the following values of the Gruneisen pa.rameter y;:——81ncu, /81nV at 8'K: 2.09+ 0.12,
1.74+0.10, and 1.70+0.10, where i refers to the R, low-frequency Tg, and high-fre-
quency T

g modes, respectively. These values are insensitive to temperature within
experimental errors. The broad feature between 70 and 100 cm is identified as a two-
libron band.

The Raman spectrum of n-N, has been mea-
sured by several workers' 4 who obtained libra-
tional frequencies which differ by as much as 6%.
The librational frequencies in +-N, have also
been the subject of an impressive number of
classical and quantum mechanical calculations' "
aimed at elucidating the form of the orientation-
dependent part of the intermolecular potential.
Quantum mechanical calculations using the quad-
rupolar interaction potential"'" yield the best
agreement with experimental results. We report
here measurements of the volume dependence of
the librational frequencies in cv-N, .

We have studied samples of n-N, using a novel
method of sample preparation by growth of solid
N, within a cell at high pressures on the melting
curve and cooling isochorically to the tempera-
ture of observation. The optical cell is equipped
with sapphire windows"' so that the sample
may be studied in situ within its high-pressure
jacket. The method has been used in inelastic
neutron studies of neon" "and krypton. " The
method has a number of advantages in addition
to permitting measurements to be made as a
function of density. Among the advantages are
these: (1) The high pressure prevents sample
cra.cking and the resultant loss of optical quality
in the samples; (2) for the same reason the ex-
ternal optical surfaces remain flat and of high

optical quality; (3) the shifts of spectral lines
with temperature directly represent temperature-
dependent anharmonic self-energies 8~/8TI„. In
customary isobaric measurements, the deriva-
tive measured is 8cu/8T(~ which is usually domi-
nated by spectral shifts induced by the change of
volume with temperature.

Samples of the high-temperature P phase of
solid N, were grown at three different sets of
melting temperature and pressure: 151 K and
6.0 kbar, 131 K and 4.3 kbar, 112 K and 3.8 kbar
--"orresponding to molar volumes of 25.1, 26.0,

and 26.9 cm'/mole for the solid. Data of Cheng'e
and of Schuch and Mills" were used to determine
the molar volumes. The optical cell was attached
to the cold finger of a cryostat allowing the tem-
perature to be controlled within 0.1'K. After
growth each sample was annealed. The tempera-
ture was then lowered slowly while the volume
stayed essentially constant until the n-phase
field was reached.

The Raman spectra were excited by the 5145-A
line of an argon-ion laser, analyzed by an Inter-
active Technology 0.5-m double monochromator,
detected photoelectrically, and displayed on a
photon counter. Figure 1 shows the Raman spec-
trum in the lattice region of an n-N, sample hav-
ing a, molar volume of 26.9 cm'/mole at 8'K.

The features observed, including the splitting
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FIG. 1. Raman spectrum of u-N2 at 8'K for a sample with a. molar volume of 28.9 cm /mole. Instrumental reso-
lution is 1 cm ~.
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TABLE I. Volume dependence of Raman spectrum in &-N2.

T
(K) z

8 88.8
85.6(0.8)
S8.2(0.8)

18 88(1.7)
S5.5(1.7)
88(1.7)
82.8(8)'
84.6(8)
87(8)"

37 5
88.7(0.8)
42(0.8)
37.2(1.7)
89.5(1.7)
42(1.7)

Frequency
(full width at half-

(cm i)

g g

height)

61.8(4.5)
65(5)
68(6)
61(5.5)
64.8(6)
68.6(6)

Relative peak
intensities
Eg.Tg.T g

8.6:1: 0.05
8.6:1: 0.05
4 2'1:& 0.05
4.7:1: 0.05
5.2 1 & 0.05
5.5:1:& 0.05

Molar volume
(cm /mole)

26.9
26.0
25.1
26.9
26.0
25.1
26.9
26.0
25.1

These lines are very narrow and the widths cannot be resolved from
the instrumental widths.

These are rough estimates since at this temperature the &g line has
merged with the low-frequency Tg line.

of the N, stretch, agree with previous results. '
However, it is worth noticing that the peak near
70 cm ' could coincide with one of the infrared-
active lattice modes. ""Coincidence between
Raman and infrared frequencies has been recent-
ly observed in the infrared spectrum of o. -N, ."
The observed coincidences between Raman and
infrared frequencies support the x-ray studies" "
and the piezoelectric studies" which assign to n-
N, a P2,3 structure in which each molecule is
displaced from a center of inversion.

Table I contains the frequency &u (cm ') of each
librational mode for different molar volumes p
(cm'/mole) and temperatures. Because of broad-
ening of the lines we could determine only the
frequencies of the Eg line at 35 K. Full widths at
half-height and relative peak intensities of the
lines are also included in Table I.

The frequencies of the Raman lines decrease
slightly as the temperature is increased from
8 to 18'K. The frequency of the Eg line decreas-
es by -3% as we further increase the tempera-
ture to 35'K, in contrast to previous results'
where the frequency was observed to change by
as much as 15% in increasing the temperature
from 12 to 35'K. Small changes are to be expect-
ed in our work since the frequency changes are
almost entirely due to explicit temperature de-
pendence under near isochoric conditions.

In Fig. 2, inn is plotted versus lnV for the low-
frequency T

g
mode at 8'K. The experimental

points fall nearly on a straight line. The negative
slope of this line is the QrQneisen parameter for
the T mode yr =- (8 in&sr /8 inV). The GrQnei-

g Tg g

sen parameter is critically dependent on the form
of the intermolecular potential, especially on the
short- range repulsive part.

Table II contains the GrQneisen parameters ob-
tained from the data in Table I. The errors in
these values are mainly due to uncertainties in
the mola. r volumes. The resulting GrGneisen pa-
rameters are rather insensitive to temperature
and are substantially higher than the result of —,

'
expected for a quadrupolar interaction potential
in the harmonic approximation. The expected re-
sult of —,

' follows from the relation e'-x ' be-
tween the librational frequency ~ and the inter-
molecular distance z.

Qur spectroscopic values are closer to the val-
ue 1.0 &y +1.5 obtained by Brookeman, McEnnan,
a,nd Scott using nuclea, r quadrupole resonance
methods. For an orientational potential of the

'X

37-

3.23 3.24 3.25 3.26 3.27 3.28 3.29
ln V

FIG. 2. Plot of inn versus lnV for the low-frequency
mode of n-N2 at O'K where the frequency u is ing„(cm and the molar volume V is in cm~/mole.
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TABLE II. Gruneisen parameters of the librational modes in ~-N&.

Temperature
(K)

Low- frequency
T

g

High-frequency
T

g

8
18
85

2.09 + 0.12
2.10+ 0.12
2.03 + 0.12

1.74+ 0.1
1.76 + 0.1

1.70 + 0.1
1.77 + 0.1

form A~ "our measured values of the GrGneisen
parameter would yield 8 &n &9 for the Tg modes
and 10&n&11 for the Eg mode, in the harmonic
approximation. However, anharmonic contribu-
tions to the GrQneisen parameters should be sig-
nificant.

It is also possible that the quadrupole moment

Q of the nitrogen molecule depends on the vol-
ume. Decreasing the molar volume may distort
the molecules and possibly increase the quadru-
pole moment, which would explain the large vol-
ume dependence of the librational frequencies in
a.-N, . An increased quadrupole moment would
also improve the agreement between experimen-
tal and calculated librational frequencies for the
high-pressure y phase recently obtained in this
laboratory.

The librational frequencies can be extrapolated
to zero pressure using the measured GrCneisen
parameters and the molar volumes at zero pres-
sure from Ref. 16. The calculated zero-pres-
sure librational frequencies are 32.8, 37.0, and
60.5 cm ' at 8'K and 32.1, 36.4, and 59.7 cm '
at 18 K to be compared to 31.5, 36.0, and 59.8
cm ' measured by Mathai and Allin' at 4'K and

32, 36.5, and 60 cm ' measured by Anderson,
Sun, and Donkersloot' at 18'K.

The feature between 70 and 100 cm ' in Fig. 1
seems to consist of a series of broad lines, the
most pronounced of which are near 70 cm ' and
near 95 cm '. The above frequencies lie close
to the sums of the Eg and each of the Tg libration-
al frequencies. The volume dependencies of the
70- and 95-cm ' lines yield GrQneisen parame-
ters 1.8 + 0.3 and 2.1 + 0.3, respectively. The er-
ror in these Gruneisen parameters is large be-
cause of the uncertainties in the frequencies.
However, the Gruneisen parameters obtained
for the 70- and 95-cm ' lines are reasonably
close to those obtained for the librations and
seem to support the identification" of the broad
band between 70 and 100 cm ' as a two-libron
band.

We would like to acknowledge the help of Paul
Fleury, Paul Lazay, and John Worlock in the ini-

tial phases of assembling our Raman scattering
equipment.
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We report a detailed neutron-scattering study of the spin dynamics in CuC12 2N(C&D5),
a physical realization of the one-dimensional S=

& Heisenberg antiferromagnet. At I'
=1.3 K well-defined excitations are observed over the whole zone with energies given by
F. (q) =xJ~ sin(qc), the celebrated des Cloizeaux —Pearson exact solution for the spectrum
of first excited states, but with intensities approximately those expected from classical
spin-wave theory. At T =8 K the excitations are broad and ill defined.

The one-dimensional (1D), nearest-neighbor
(nn), S= 2 Heisenberg antiferromagnet is one of
the few nontrivial many-body problems with in-
teresting dynamics for which exact solutions ex-
ist. In 1931, Bethe' found the ground-state eigen-
function, and he showed that no long-range order
exists even at 0 K. Somewhat later, Hulthen' de-
rived the ground-state energy E, = —( Jl N(2 ln2
—2). In 1962, des Cloizeaux and Pearson' (dC-P)
found that the first excited states obey the simple
dispersion relation

&(q) = «I sin(qc)l,

where c is the nn separation, and they identified
these excitations as "spin waves. " They noted
that, quite remarkably, the dispersion relation,
Eq. (1), has a double periodicity of v just as in
standard spin-wave theory starting from an as-
sumed Neel ground state. However, the coeffi-
cient of Z in Eq. (1) is equal to x, compared with
2 for classical spins. It has not proven possible,

however, to go from the exact dC-P calculation
to a response function )("(q,~). In order to eluci-
date this problem, we have carried out a detailed
inelastic neutron scattering study of the spin dy-
namics in CuCl, ~ 2N(C, D, ), dichlorobis pyridine
copper II (CPC). As discussed below, CPC is a
good physical approximation to the idealized 1D
nn S= 2 Heisenberg antiferromagnet. We find that
at T =1.3 K there are sharp excitations with a
dispersion relation given precisely by Eq. (1);
this work thence constitutes the first experimen-
tal observation of the dC-P states.

We first discuss the crystal structure' and the
consequent magnetic properties' of CPC. As
shown in Fig. 1, CPC is body-centered monoclin-
ic, with space group P2,1„. Each Cu" ion is lo-
cated at the center of a rhombus of chlorine and
nitrogen atoms which are stacked along the c ax-
is, thence giving rise to a linear chain structure.
The chains are kept well separated by the large
intervening pyridine molecules; the ratio of in-
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