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A class of relativistic-field-theoretic models of permanently bound quarks are shown
to exhibit new and unconventional properties. They display crossing symmetry, but
their Green's functions have an infinite array of singularities in momentum space and
are singular everywhere in coordinate space. Nevertheless, these models are consis-
tent quantum field theories that describe a system of interacting bound states which can
decay into one another but not into quarks.

A conventional perturbative solution of a quantum field theory has asymptotically free quanta of the
fundamental fields. However, since quarks are not observed, a conventional solution is inappropriate
in theories with quark fields. Johnson has suggested a new mechanism, which is a relativistic gener-
alization of an r' potential binding quarks, which could account for the permanent binding of quark
fields and thus the nonexistence of asymptotically separating quarks. In this paper we develop a new
self-consistent field-theoretic perturbation method to describe strongly interacting particles which in
lowest order incorporates this mechanism.

We will generalize some of our remarks to fermion fields in future papers, ' but here we confine our
discussion to a boson field y with a y interaction. Triality is thus replaced by field parity p- —y. A
"quark" state has odd field parity and a "meson" state has even field parity.

We begin by assuming that there exist states of n mesons and states of n mesons and one quark, and
we denote the corresponding projection operators onto these states by P„and I', „. Projecting with
P, „and isolating the one-quark, n-meson contribution to y, the quark field equation becomes

(- ' -m, ')P, „y(x) = AP, „rp'P, „y(x) + eZP, „p'(x)(t -P, „)p(x).

e, and not ~, is the perturbation parameter for this theory. Matrix elements are taken to be power
series in &. Each calculation is concluded by setting & =1.

The basic assumption of this theory is that the one-quark to one-quark matrix element of the quark
current I(x) —= Ay'(x) is extremely singular at zero momentum transfer; this is how the theory incor-
porates an effective long-range potential between quarks. We further assume that to zeroth order in
&, the one-quark, n-meson matrix element of the quark current is dominated by this singularity:

&q, p„.. .,p„lI(0)lq', p, ', . . .,p„'! =(p„.. .,p„lp, ', . . ., p„') [y(slsq~)(q"q" —g"'q )(slsq')+oj

Here y and o depend on A.. Equation (2) is a manifestly eovariant generalization in differential form of
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the mechanism proposed by Johnson. ' The consistency of this assumption must be verified once the
theory is solved to zeroth order in c. This has been accomplished for the corresponding model in two-
dimensional space-time. '

Zeroth or-der solution, meson spectrum. %V—e take the matrix element of the field equation (1) be-
tween states of n mesons and one quark and an arbitrary state Ix), retain terms to zeroth order in 6,
and substitute Eq. (2). We then replace m, the bare-quark mass, and the parameter 0 by the single
parameter m, the physical-quark mass, by letting n =0 and Ix) be the vacuum state. The resulting
wave equation is

[(P.-p,. -q)'-~ -y(e/sq")(qq"'-g"'q')(e/aq")]&p„", P., qlq (o) I & = o

Letting Ix) be a meson of mass M, momentums, and spin t, we write

&qlq (o) IP &'I;=.=g(z) 1'&'(fl;),

where Mmz =p q. Combining Eqs. (3}and (4) gives an equation for g(z):

(3)

[(z' - 1)d'/dz'+ 3z d/dz —J(Z+ 1)/(z' -1)+(p,
' -2pz)/y]g(z ) =0,

where p, =M/m. This equation has regular singular points at z = ~1 and an irregular singular point at
z =~. But z = p, /2, which corresponds to the momentum transferred to the quark field being the square
of the quark mass, (P —q)z =m', is a regular point. Thus g(p, /2) is finite, verifying that a meson does
not decay into two quarks.

Evaluating the form factor &p II (0) Ip) by inserting a complete set of states and requiring it to be fi-
nite places boundary conditions on Eq. (5): g(l) =g(~) =0. This leads to a discrete mass spectrum for
the mesons which in a VfKB-like approximation is given by

4p, „vy[ln(4p, „)—2] = m(4n+ 2J + 3), n = 0, 1, . . ., n &Z. (6)

We have also solved Eq. (5) numerically for the eigenvalues p, and have displayed the results on the
Chew-Frautschi plot in Fig. 1. The meson masses lie on almost linearly rising trajectories.

To complete the lowest-order solution one must consider states lx) beyond the one-meson state.
Equation (3}implies that the most general state Ix) consists of n noninteracting mesons whose mass
spectrum is already given in Eq. (6). That the mesons are noninteracting is illustrated by the follow-
ing property of the solution:

&P&, ~ ~ .,P„qly(0)lp&', ~ ~ ~ Pn+~'& =&P& ~ ~ ~ Pnlp~'~ ~ ~,Pn'& &qlp(0)lp&+&'&0+permutations.

All other matrix elements of the field are zero.
Thus, in this lowest approximation the model has
only states with n free mesons or n free mesons
and one quark.

The details of proof of the consistency of the
initial assumption in Eq. (2) are too complex to
be presented here. However, we emphasize that
the only way to reproduce such a singularity by
summing over intermediate states is for there to
be an infinite number of mesons; but, the very
existence of these mesons depends on the pres-
ence of a long-range force and hence the singu-
larity at q =q'. We also remark that the consis-
tency condition is nonlinear and thus it fixes the
overall normalizations of the matrix elements
&q ly(0) lp), which are needed to calculate the me-
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son decay amplitudes.
First or-der solution, meson decays .—Taking matrix elements of Eq. (2) and keeping terms to first

order in c gives

[(q -P, -P,)' -~']&q lq (0)IP„P,&' = 5&q II (o) Iq'&'&q' ly(0) Ip„P,&'

&qlf (0) lq', P '&'&q', P'lq (0)lp„p.&',
a11 meSons, P', a '

where we have set e =1 and used (qlp(0)IP„P2&'=0.
Substituting the zeroth-order matrix elements into Eq. (7) gives

[(q -P, -P,)'- ' r(-»sq")(q" q" k"-'q')(»8 q)]& ql9 (o) IP„P.&'

= x(ql y(0) Ip, &'f [d'q'/(2w)'2q "](q'Iy (0) Ip, & + (1—2).

(7)

(8)

This is a first-order version of Eq. (3).
The solution of this equation is singular whenever (p, +p, )' approaches the square of the mass of a

meson, p'. The singularity has the form

&q Iq (0)Ip, p, &'- c&qlq (o)IP&'[(P, +P.)'-P'] ',

so c may be identified as the meson decay amplitude (P IP„P~&'. Manipulation of Eq. (8) yields the de-
cay formula

x I[d'q/(»)'2q'1 &q It(0) I p&'&q lq (o) Ip.&'f [d'q'/(»)'2q "l&q' le(0) Ip,&',
P Pg, P2 '=

J[d'q/(»)'2q'](1 - p q/P') l&qlq (o) IP&'I'

We have evaluated this expression in two-dimensional space-time for two distinct decay processes.
We find that the cascade mode (M-M, +Ma, M, ~M, M, «M) is strongly preferred over the symmetric
mode (M-M, +M„M, =M, «M). The respective amplitudes A, and A, for these decays are

~'(ua)"'cost~(u —
V )]»nh (u I ~)(4—»u —1)]

A
~'1'(~s)(u, y/8)'/'I &"

Wxy'ln(4g, ) ln(4p, ,)(p —y. ,) 2WAy 1n'(4p, )
(10)

This result suggests that the selection rules for decay processes may already be included in the dy-
namical assumptions of the model.

Further calculations to first order in e show that (qlq (0)lp&' and (qlq (0)lp „p,&' have no quark poles.
Thus mesonic states continue to be stable against decay into quarks. We also find that (q, plq(0)I0&' is
the analytic continuation of (qlp(0)l-p& (plus an additional term when the spin of the meson is 0). Thus
the theory is crossing symmetric to first order in ~. Recall that crossing symmetry is the momen-
tum-space statement of locality. We speculate that a crossed matrix element in (n+ 1)th order is the
analytic continuation of the direct matrix element in nth order, plus possible corrections from higher
orders.

Finally, we calculate the quark propagator to second order in e. In general

&oI T[q(~)q (0)]]0&=fdu'p(u')t „'"(~),
where

p(&') =5(&'-~')+(») ' 2 f(d'Pd'q/2P'2q') I&olq(0) lp, &'qI' (5p q+—t)+ o(~')

Thus the propagator has a quark pole even though quarks are not produced in a scattering process.
However, the matrix element (Ol y(0) ip, q&' is singular near the threshold (p+ q)' = (M„+m)'= S„, which
corresponds to the z= —1 singular point of Eq. (5). Near this singularity p(k')-8(k' —S„)(k' —S„)
where J is the spin of the meson. Except for J = 0, these contributions are nonintegrable and we must
conclude that the two-field Green's function, and probably all Green's functions, do not exist (are in-
finite everywhere) in coordinate space. This theory exists only as a momentum-space theory.

This remarkable result is crucial because it frees the theory from any conflict with the cluster-de-
composition theorem. This theorem states that at widely separated bunches of space-time points,
Green's functions in a local quantum field theory factor. This theorem would contradict the assump-
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tion of permanently bound fundamental quark fields, but the nonexistence of coordinate-space Green's
functions obviates the proof of the theorem. Nevertheless this model probably retains the physical
consequences of the cluster-decomposition theorem for mesons, as is indicated in the lowest approx-
imation where the mesons are free particles.

We have thus shown that it is possible to formulate, in a mathematically consistent manner, local
relativistic quantum field theories which have permanently bound quarks. The general properties of
such theories are obviously unconventional, but we see no reason to criticize these theories for ex-
hibiting them, especially as they follow from very reasonable physical assumptions.
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I consider the average displacement from its near neighbors of a parton in a hadron
string after absorbing a highly virtual photon. It is found that for Q2 ~60 GeV, the struck
parton would find itself separated from its near neighbors by a distance greater than the
average internucleon spacing in a nuclear matter. I discuss the consequences of this re-
sult vis a vis deep inelastic scattering of leptons from complex nuclei.

The deep inelastic lepton-hadron scattering ex-
periments at the Stanford Linear Accelerator
Center, ' CERN, and the National Accelerator
Laboratory' seem to establish Bjorken scaling'
over a spectacular range of Q and v. The sim-
plest realization of Bjorken scaling is provided
by the parton model, ' in which the currents scat-
ter incoherently from elementary constituents
within the nucleon. The proximity of the ratios
&-, /&„and fxF, (x)dxt' J—F,(x)dx to the value 3

and 1, respectively, ' lend support to the charac-
terization of partons as quarks. The validity of
the impulse approximation requires that the forc-
es responsible for binding the partons be fairly
soft, ' and hence that a parton can travel freely
for a considerable distance after being struck. '
The crisis is then clear: Why do we not see
quarks in nature2' Various models of containment
have been proposed, but the nature of their con-
clusions (i.e., absolute containment) makes an
experimental test of these models extremely prob-
lematic.

A different approach to the problem is taken in
the present work. We first emphasize the lack
of any basis for deciding how far a parton with
nonzero tria1ity may w'ander from its neighbors
before being pulled back—it may be much farther
than 1 fm. We then focus our attention on the
scattering of leptons from complex nuclei, and
examine the behavior of a parton struck by a vir-
tual photon (or W"). Within the dynamics of the
phenomenological dual string model, ' we find that
for Q' & 60 Qe V', &o = 3, the average displacement
from its near neighbors of the struck parton ex-
ceeds the average internucleon distance in a com-
plex nucleus. It is then proposed that the normal
string might fail to retrieve the struck parton be-
cause of screening by the intervening nuclei (the
existence of bilocal operators implies that quarks
of nonzero triality do scatter absorptively from
nucleons). We then discuss some possible exper-
imental consequences of this result.

For simplicity, we work in an infinite-momen-
tum frame, and formulate the string model in the


