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action between Maxwell molecules for which A.

=v/v, then for any field strength, the distribu-
tion is always Maxwellian,

mv'
2kT„'+My'/3(cu'+ v')

with a modified "temperature" at

MU'
3k 6k(&u'+ v )

'

In this case the energy spread is determined not
only by the neutral-gas temperature and the flow
speed, but also by the field strength, the frequen-
cy, and the collision rate.

(II) For arbitrary angle a, the results are sim-
ilar for subcases (A) and (B), except that v' is re-
placed by (3U'cos'a+v'). Effectively, the elec-
tron-distribution function is now further broad-
ened by the component of the flow velocity in the
field direction. For the corresponding subcase
(C) of Case (I), Eq. (14) can also be integrated
exactly.

Once fo is obtained, we can apply Eq. (8) to
calculate the conducitivity, current density, di-
electric constant, and index of refraction in a

weakly ionized flowing gas. Detailed application
to the microwave-plasma interaction will be giv-
en in another paper.
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%e present an analytic solution for the resonant oscillations of a coM, inhomogeneous,
one-dimensional p1asma under the influence of a sinusoidal applied field. The model ap-
proximates the response to obliquely incident eIectromagnetic radiation. Energy can be
absorbed collisionlessly through either electron wave breaking or ion bunching, when
the driven field is strong or weak, respectively. The two regimes are distinguished by
eEI &~0.02Lm2~ /M, where I. is the plasma scale length and E~ the longitudinal driver.
In the weak-driver case, ions with keV energies can be produced in the resonance region.

Particle-code simulations' show that the reso-
nant response of a one-dimensional plasma to
obliquely incident electromagnetic radiation' '
is well approximated by its response to a longi-
tudinal field applied parallel to its density gradi-
ent. The computer results, and the analytic solu-
tion presented here, predict large-amplitude
electrostatic waves propagating in the direction
of decreasing density; such waves have recently
been observed experimentally. '

The present analysis is based on cold-plasma
equations and small ion-density perturbations;

the dominant mechanism is that of driven-elec-
tron-plasma oscillations which exhibit wavelike
behavior phase and amplitude variations caused
by the inhomogeneous background ion density.
They are not Langmuir waves capable of convect-
ing energy away from the resonant region. ' '
The theory is valid if the nonresonant-electron
"quiver" velocity is greater than the thermal
speed, eEI/m~ &v„, where E~ is the longitudi
mal driver field; computer studies' indicate that
this is a conservative criterion.

Solutions based on this model fail when the
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electron waves break or when ion-density per-
turbations become nonnegligible. Electron wave
breaking generates a stream of fast electrons, '
which invalidates the cold-plasma assumption;
physically this means the absorption of incident
energy through collisionless electron heating.
Qn the other hand, ion bunching spoils the elec-
tron resonance; it may also produce ion over-
taking and thus fast ions. ' Therefore, the two

ways in which the theory breaks down correspond
to regimes of preferential electron and ion heat-
ing.

The driven-electron oscillations behave at first
as if the ions were immobile, i.e., the local ini-
tial ion density N, (x) causes simple harmonic mo-
tion of the electrons with frequency ~~(x) (provid-
ed the amplitude is small enough for the oscilla-
tors to rema. in linear; analysis shows that this is
true). The oscillation amplitude grows secularly
in a small, shrinking region around the critical
surface, bounded by two principal nodes.

In these cold-electron-plasma oscillations, the
electric field is proportional to the displa, cement,
E(x, f) ~ 5(x„f), where x, is the equilibrium posi-
tion (the Lagrangian coordinate') of the electron
presently at x. Because the amplitude peaks on
resonance, electrons coming from the direction
of the critical surface "carry with them" larger
electric fields than those coming from the oppo-
site direction. The resulting time-average elec-
tric field pushes the ions away from the critical
surface.

Ions leaving the neighborhood of the critical
surface are first accelerated, then decelerated
(the force described above reverses itself beyond
the principal nodes, where the amplitude of the
oscillations increases again). In traversing the
region of decreasing acceleration, they tend to
bunch, ' and positive ion-density perturbations oc-
cur near the boundaries of the resonant region.
These, and the negative perturbation at the criti-
cal surface, grow with time, and eventually can
no longer be ignored.

There are two time scales of interest: t„ the
time at which the electron wa.ves break; and t„
the time when ion-density perturbations must be
accounted for. If t, &t„energy is put into fast
electrons, while if t; &t„ the ion perturbations
cause an end to the resonant transfer of energy
into the oscillations. By the time this happens,
the heavy ions have acquired a drift velocity
which causes them to overtake unless the fields
reverse themselves sufficiently.

Steady- state analysis of resonant absorption"

predicts a ponderomotive force that pushes the
ions away from the critical surface. However,
in the collisionless case the steady-state field is
infinite at the critical surface. ' ' We show here
that wa. ve breaking and ion bunching preclude the
existence of such a steady-state solution.

Analysis of the electron motion is straightfor-
ward in Lagrangian coordinates. ' The equation
of charge continuity and Poisson's equation in one
dimension admit a homogeneous driver field,
which we take to be E~ sin(dt. These two equa-
tions and the momentum equation for cold elec-
trons are sufficient to determine the electron
displacement 5 =x -xp, if we assume that the ion-
density perturbation AN is small compared with

Np If distances are measu red in units of I. and
times in units of ~ ', the equation for 5 is

5+ +I,'(x, )5 = e sint,

where &u~'= lie'N, /m~', and e =eEI/mw'I. is a
small parameter. Equation (1) is valid if 5«1.
Its solution is conveniently written as

~ 1

2+v 1+v pv

where v =&a~ —1. The limit of 5 as v-0 (at the
resonance) is

5 = g f (sinf —f cost),

displaying a secular growth. The second term
in Eq. (2), which corresponds to the secular
term in Eq. (2), shows that the oscillations also
grow in a contracting region about the critical
point defined by two principal nodes located at
~v„, where

v„= 2II/t.

The phase of the resonant term in Eq. (2) is
such that the displacement at positive v leads
the displa. cement at the critical surface, while
that at negative v lags it. Therefore, in Lagran-
gian space, the displacement resembles a wave
propagating from supercritical to subcritical v,
traversing the internodal distance in one driver
period.

After the transformation from Lagrangian to
Eulerian coordinates is carried out, through in-
version of

the electric field, electron velocity, and number
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FIG. 1. The electron number density as a function of

x at four different times during a driven cycle. The
dashed curve is at t =61.5Ij.

density are found, respectively, from

E(x, t) =4veLNO(xo)5(xo, t),

u(x, t) = ~L5(x„t),

n(x, t) =N, (x,)(ax/Sx, ) '.
In Eq. (6) the driver term, small compared with
the resonant term, has been dropped.

These fields exhibit the properties of the parti-
cle-code simulation of Friedberg et al. ' Waves
of secularly increasing amplitude propagate from
overdense to underdense regions, growing as
they approach the critical surface and decaying
as they recede from it (Figs. 1 and 2). They
eventually break; the condition for breaking is'
sx/sx, =0. Differentiation of Eq. (3) shows that
sx/sx, has its minimum value for each cycle at
the critical surface, and that wave breaking oc-
curs near t =t„where

FIG. 2. The electron phase space during the cycle
in which the waves break. Velocities are in units of
I, and distance in units of I .

units is

X = (m/M) 5(x„ t),

where x, is the initial position of the electron
presently at the ion position X. If the ion dis-
placement X -X, is small compared with the no-
dal distance, the distinction between Eulerian
and Lagrangian ion coordinates is unimportant,
and x, can be considered as a function of X, rath-
er than of X. If the electron waves are not close
to breaking, the inversion of Eq. (5) in this case
can be approximated by

5(x„, t) - 5(X„t) [(I —s 5(X„t)/sX, ].
~t,' = 8.

At that time, the magnitude of 5 is (2e)'".
The ion equation of motion in dimensionless

(12)

With this substitution, Eq. (10) can be integrat-
ed. Sinusoidal terms of frequency ~ or 2~ make
a negligible contribution. The low- frequency and
dc terms give

Pl e t 4 ~ t slllvt ~ (1 —cosvt)
X(xo, t) Xo+ q, 3

—((dp +3&p ) + Mp ((dan+I) —
q (5(dp +2u)p +(up)

V J
where v and ~~ are to be evaluated at X,.

The ion density, N, (sx/BX, ) ', can be evaluated easily, at any time, along the Lagrangian node tra-
jectory (4). We find

N(x(x„(t), t), t), - (N)x[1 —(4v) 'm e't'/M ] ', (13)
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where x„(t) is the present location of the node in

x, space. Numerical integration of Eq. (10) with-
out approximation (11) shows that this is a good
estimate of the maximum ion density at time t,

It is not clear within the present framework
how large a density perturbation can exist with-
out destroying the resonance, but Eq. (13) is not
sensitive to this. Letting o. be the tolerable AN/
N„assumed small, we find the time t, at which
the resonance is destroyed to be

I0—
& = 2xi0

9—X = —00628-X„(2000)
Ap 8—

l

l

I

t

/

/

(411)2/3+/~)1/6e 1/3~1l6 (14)

e =0.02m/M. (15)

For stronger drivers the electrons are heated
while for weaker drivers the ion dynamics domi-
nates.

Since the approximations used in deriving Eq.
(13) lose their validity when b.N/N, is nonnegligi-
ble, we cannot, assume that the force tending to
bunch the ions continues to act as before. How-

ever, the ions acquire a drift motion tending to
make them overtake, as can be seen from the be-
havior of the ion density in Fig. 3, under the as-
sumption that all fields cease to act when n =0.1.

The velocity of the energetic ions generated by
overtaking is at least the maximum ion velocity
produced by the time-average field. This veloc-
ity is sensitive to the cutoff a. It can be estimat-
ed through differentiation of Eq. (12) and evalua-
tion of the derivative at t;, along the nodal tra-
jectory (4). The ion kinetic temperature kT,
which corresponds to this velocity is

kT - '(411en)"'(-M/m)"'mc'(L/&)'

where A. is the free-space wavelength of the driv-
er, 2vc/~. For a deuterium plasma with e =2
&10 ' and o =0.01, kT, -0.1(1./a) eV3, some 100

In order for criterion (14) to be valid, f; must
be small compared with t„since otherwise Eq.
(11) is not true. At any rate, f; =t, is the condi-
tion separating preferential ion and electron heat-
ing. If in Eq. (14) we take o. =1, i.e., take t; to
be the time of ion overtaking predicted by Eq.
(13), and use Eq. (9), we find a condition on the
driver field

I
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FIG. 3. The ion number density at the present posi-
tion of an ion versus time, if Eq. (11) is valid until
overtaking (solid curve) and if the electric field is zero
after 4N/No =0.1 (dashed curve).

eV for L/A-30 and 1. keV for L/A =100.
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