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A self-consistent version of the 1/n expansion is used to calculate the critical exponent
g(n, d) for an n-component Ginzburg-Landau field with spatia1 dimensionality d. The re-
sult is exact to first order in 1/n but also inc1udes a partial summation of graphs to a11
orders in 1/n. This leads to a bounding of g for sma11 n, in contrast to the simple 1/n
expansion. Results are g(3„3)=0.079, g(2, 3) =0.11, and g(1, 3) =0.177. For d=2 the
theory leads to the conjecture that p vanishes for large va1ues of n.

A recent approach' ' to the problem of second-order phase transitions consists of expanding the crit-
ical exponents as power series in I/n, where n is the number of components of the order parameter.
This procedure (the "screening approximation") gives systematic corrections to the spherical model
(Hartree approximation) which corresponds to the limit n -~. At the present time exponents are known
to order I/n for all d in the range 2 & d & 4. Unfortunately, it has thus far proved difficult to extend the
expansion beyond the first order. (The exception is Abe's calculation, ' to order n ', of g for the spe-
cial case d=3. ) It is possible, however, to include an infinite subset of such higher-order terms in a,

straightforward way by using self-consistently determined propagators in the graph-theoretic formula-
tion to the problem. ' The calculation of q within this "self-consistent screening approximation" (SCSA)
is the purpose of this Letter, In contrast to the simple I/n expansion, the inclusion, within the SCSA,
of terms of all orders in 1/n leads to a, bounding of g for small n. In addition, the method is sufficient-
ly powerful to deal with the case d = 2, where the simple I/n expansion breaks down (as far as the cal-
culation of critical exponents is concerned ). For this case we find that g vanishes for n ~ 2. For n

&2, a nontrivial solution appears with g increasing monotonically from zero at n= 2 to unity at &=0.
%'e conjecture that this result is qualitatively correct.
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The calculation starts from the Ginzburg-Landau (GL) free-energy functional:

+ {q}=Jd' {lZ[ q +(&~;)']+l- '(rp }",

Here 7 cc (T —T,)/T„where T, is the mean-field transition temperature. The order-parameter corre-
lation function, or propagator, is given by

A'(r) = (q, (r)9, (0)) = ZG L
'III; (dP;)P (r)P,. (0)exp(- F „{P}),

where ZG„= fp, (dy. , )exp( F-G{q&}). We are inter-
ested in the Fourier transform g(k), given by where

g(k) =[~+k'+o(k)] ',

with o'(k) the self-energy function. The SCSA is
defined' by the self-energy graphs of Fig. 1(a).
The straight line depicts the fully dressed prop-
agator; the wavy line represents the "screened"
potential, —(1/n) v(q), and is given by the Dyson
equation of Fig. 1(b). In the usual way each dashed
line is associated with a factor —I/n and each
closed loop with a factor n to give'

o(k) =Z,a(q)+ (2/&)Z, (q)g(i+k)+0(1/~'), (2)

v(q)=[1+m, (q)] ', (3)

g(k) = (Z '/k')(k/k, )", (5)

with k, and Z ' constants, one of which we are
free to choose. Substitution into Eq. (4) yields'

where

&o(q}=Z,g(p)g(p+ i).
To calculate the exponent q we work at the crit-

ical point, where g(0) = ~. Then g(k) takes the
form

1 I'(2 —q ——,
' d)[I'(—,

' d+ 2q —1)]'
(4 )

" I'(d+ g —2)[I'(1 ——,'q)]'

and the inequalities on q ensure that the sum for
v, (q) converges

For small q, ~,(q)»1, so that Eq. (3) gives
v(q) =[a,(q)] '. For large q, on the other hand,
w, (q}«1, giving v(q) = 1. The intermediate re-
gion determining the changeover between these
two regimes is given by q-k„where ~,(k,) = 1.
This fixes k,. Hence we adopt the following form
for v(q):

]Z'[f{d p)] 'k '"q4 ' '", q &k„'=)I, q k,.
Fortunately, the details of the way in which v(q)
levels off around q =k, only affects the determi-
nation of the constant Z and not that of g, which
depends only on the small-q form of v(q). This
is a reflection of the fact that q is a universal
(model-independent) function of n and d, whereas
Z is not, "

To determine g we need the k-dependent part of
the self-energy: From Eq. (2)

m, (q) =Z 'f(d, g)k '"q'"" '
4-2q& d & 2 —q,

(8) &(k) —&(0) = (2/&)Zp(q}[a'(k+ i) -g (q)].

Using Eqs. (5) and {"I)gives'

a (k) —v(0) = (2/n)Z [g {d, ri)/f {d,g)] k'(k, /k }"—(term in k'), 2 & q ) 0,

where the term in k comes from splitting the sum at q=k, in accordance with Eq. (7), and where

1 2 4 —d —2q I'{I+-,'rl)I'(2 —q) I'(-, q+ —,
' d —1)

{4~)'"q 2 —q I (I —-,'q)r(q+ & d —1)r (1+-,' d —&q)'

We can now find g by noting that o'(k) —a(0) is also given by Eqs. (1) and (5):

v(k) —v(0) = Zk'(k, /k)"- k'.

Matching of the terms in k' in Eqs. (8) and (9) determines the constant Z (subject to the remarks above).

(a) FIG. 1. (a} SeLf-energy graphs in the SCSA. (h) Dy

son equation for the screened potential.
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Matching of the terms in k,"A' " determines g via the condition

f(d, n) = (2/~)Z(d, ri),

giving

4 4 —d —2g I'(1+ 2q)I'(1 ——,'g) I'(2 —ri) I'(d+ g —2)rl-
n 2 —q I'(ri+-, d —1)I'(1+-,d —2q) I'(2 —ri ——,d)1'(-, 4+ 2 q —1)1 + O(1/lg ) (10)

I call the solution of Eq. (10) g„(n, d). Some spe-
cial cases are of particular interest.

(i) The limit n -~.—In the large-n limit g be-
comes small enabling us to replace it, to lowest
order, by zero in the right-hand side of Eq. (10).
This gives

4 4 —d I'(d —2)
n d I'(2 ——d) I'(-' d)[I (—

' d —1)]"

no&1
in agreement with the results of Abe and Hikami'
and of Ma. ' As expected, our result is exact to
order I/n.

(ii) The case 4 = 3.—Setting 0= 3 in Eq. (10)
yields

16 1 —2q vq vq/2
nw' (2 —q)(3 —q) tan(~rI) tan{~ri/2)'

(12)

8
~5C —-2~

dW 5

Expanding to order I/n' gives

q„= (8/3m'n) -~8 /, )'{I/m'n')+O(n ').

(13)

This should be compared to Abe's exact result'
to order 1/n2:

In the large-n limit one recovers the standard re-
sult

! conclude that the SCSA is unreliable for n ~ 1 as
is to be expected of a large-n approximation.
Note also that the q versus n curve should even-
tually bend over so that g vanishes~ at n = —2.

(iii) The case d = 2.—This case provides the
most interesting application of the self-consistent
method since the simple I/n expansion breaks
down here by virtue of the spherical model ex-
hibiting no phase transition. One may attempt to
circumvent this problem by performing the ex-
pansion for arbitrary d (2 &d &4) and taking the
limit d-2+ at the end. In first order this gives
g = e/n, e = d —2 « I [as may be seen by setting d
= 2+ e in Eq. (11)], leading to a vanishing q as e
-0. It has been conjectured, "however, that this
procedure will produce a nonzero result in sec-
ond order. The present calculation does not sup-
port this view. Expanding our general result to
order n ' for d=2+e, yields g„=e/a+2m/nm
+O(n ~), i.e. , the nonskeleton second-order
graphs vanish linearly as d-2+. Work in pro-
gress'4 indicates that this is also true of the skel-
eton graphs, not included here.

0.5-
l
i

r) Ab,
= (8/3n'n) —(~)'(I/m4n'). (15)

We see that the SCSA underestimates the coeffi-
cient of the 1/n' term by a factor,—',. In fact ii is
interesting to note that Eq. (14) follows directly
from including only graphs (a) and (c) of Abe's
calculation. 2 This is to be expected since these
graphs are nonskeleton, i.e. , they result from
making propagator self-energy insertions in low-
er-order graphs. Abe's graphs (b) and (d), on
the other hand, are skeleton graphs and are there-
fore not included in the present calculation.

Equation (12) can be solved numerically for
g„(n, 3). The result is shown in Fig. 2. Also
plotted are the first-order result, Eq. (13), and
Abe's result, Eq. (15). Particular values are
q„(3,3) =0.079 and ri„(1,3) =0.177. High-tem-
perature™series estimates" are somewhat lower:
q(3, 3) =0.043 + 0.014 and g(1, 3) 0.055+ 0.01. I

0.2

O. I

FIG. 2. The exponent q versus n for d =3. The SCSA,
order 1/n, and order 1/n results are labeled &~„, &~~,

and 'q Ab „respectively.
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i.O q- 1/n" (x nonintegral) and r}-e ", for example,
would lead to similar behavior and cannot be
ruled out.

It is a pleasure to acknowledge helpful discus-
sions with Professor R. A. Ferrell. The award
of a Fulbright-Hays scholarship is also gratefully
acknowledged.

FIG. 3. The exponent g versus n for d =2 within the
SCSA. The exact solution of the two-dimensional Ising
model, &](1,2) =g, is shown for reference.

Setting d=2 in Eg. (10) yields

giving either the trivial solution q„=0 or the non-
trivial result

ps c= (2/8 -n)[4 n+ (-2n)"']

where the negative root must be taken to satisfy
the conditions on r) in Eq. (6). The result is
shown in Fig. 3. For n & 2 one must take the triv-
ial root q„=0. The Ising-model result is shown
for comparison. Since SCSA is essentially a
large-n approximation one should not place too
much faith in the numerical values it predicts for
these small-n values. I conjecture that including
higher-order terms in 1/n exactly will merely
shift the value of n at which q vanishes. [Recent
work by Kosterlitz and Thouless" predicts a tran-
sition for n =2 with q(2, 2) = ~ but no transition for
n = 3 and therefore presumably g(3, 2) = 0. ] Here
I assume that the vanishing of g at each order in
1/n for 2 =2+, which holds in the present model,
is a general result. Note however, that the forms
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