filter.

*Submitted by one of the authors {V.P.%.) in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Temple University.

†Work partially supported by National Science Foundation Grant No. GT-16336.

f.National Bureau of Standards Guest from Physics Department, Temple University.

 1 M. S. Green, J. Chem. Phys. 33, 1403 (1960).

 2 M. E. Fisher, J. Math. Phys. (N.Y.) 5, 944 (1964).

 ${}^{3}R$. J. Birgeneau, J. Skalyo, Jr., and G. Shirane, Phys. Rev. B 3, 1736 (1971}.

4M. P. Schulhof, P. Heller, H. Nathans, and A. Linz, Phys. Rev. B 1, 2304 (1970).

'A. Tucciarone, H. Y. Lau, L. M. Corliss, A. Delapalme, and J. M. Hastings, Phys. Rev. B $\overline{4}$, 3206 $(1971).$

 6 J. H. Lunacek and D. S. Cannell, Phys. Rev. Lett. 27, 841 (1971); I. W. Smith, M. Griglio, and G. B. Benedek, Phys. Rev. Lett. 27, 1556 (1971); J. W. White and B. S. Maccabee, Phys. Hev. Lett. 26, 1468 (1971); V. G.

Puglielli and N. C. Ford, Jr., Phys. Rev. Lett. 25, 143 (1970).

 7 H. D. Bale, B. C. Dobbs, J. S. Lin, and P. W.

Schmidt, Phys. Rev. Lett. 25, 1556 (1970). 8 M. E. Fisher and R. J. Burford, Phys. Rev. 156,

583 (1967}.

 9 M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20 , 665 (1968).

 10 M. Vicentini-Missoni, J. M. H. Levelt Sengers, and M. S. Green, J. Res. Nat. Bur. Stand., Sect. A 73, 593 (1969).

 11 M. A. Moore, D. Jasnow, and M. Wortis, Phys. Rev. Lett. 22, 940 (1969).

 12 K. G. Wilson, Phys. Rev. Lett. 28, 548 (1972).

 13 M. J. Buckingham and J. D. Gunton, Phys. Rev. 178 , 848 (1969).

 14 W. L. Greer, J. M. H. Levelt Sengers, and J. V. Sengers, private communication and to be published.

 15 J. V. Sengers, Critical Phenomena, Proceedings of the International School of Physics "Enrico Fermi," Course 51, edited by M. S. Green (Academic, New York, 1971).

 16 A detailed publication by one of the authors (B.M.) will follow.

Self-Consistent Screening Calculation of the Critical Exponent η

Alan J. Bray

Center for Theoretical Physics and Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742 (Received 1 April 1974)

A self-consistent version of the $1/n$ expansion is used to calculate the critical exponent $\eta(n, d)$ for an n-component Ginzburg-Landau field with spatial dimensionality d. The result is exact to first order in $1/n$ but also includes a partial summation of graphs to all orders in $1/n$. This leads to a bounding of η for small n, in contrast to the simple $1/n$ expansion. Results are $\eta(3, 3) \approx 0.079$, $\eta(2, 3) \approx 0.11$, and $\eta(1, 3) \approx 0.177$. For $d = 2$ the theory leads to the conjecture that η vanishes for large values of n .

A recent approach¹⁻⁵ to the problem of second-order phase transitions consists of expanding the critical exponents as power series in $1/n$, where *n* is the number of components of the order parameter. This procedure (the "screening approximation") gives systematic corrections to the spherical model (Hartree approximation) which corresponds to the limit $n \rightarrow \infty$. At the present time exponents are known to order $1/n$ for all d in the range $2 < d < 4$. Unfortunately, it has thus far proved difficult to extend the expansion beyond the first order. (The exception is Abe's calculation,² to order n^{-2} , of η for the spe-
expansion beyond the first order. (The exception is Abe's calculation,² to order n^{-2} , of η for the sp cial case $d=3.$) It is possible, however, to include an infinite subset of such higher-order terms in a straightforward way by using self-consistently determined propagators in the graph-theoretic formulation to the problem.⁶ The calculation of η within this "self-consistent screening approximation" (SCSA) is the purpose of this Letter.⁷ In contrast to the simple $1/n$ expansion, the inclusion, within the SCSA, of terms of all orders in $1/n$ leads to a bounding of η for small n. In addition, the method is sufficiently powerful to deal with the case $d = 2$, where the simple $1/n$ expansion breaks down (as far as the calculation of critical exponents is concerned⁸). For this case we find that η vanishes for $n \ge 2$. For n \leq 2, a nontrivial solution appears with η increasing monotonically from zero at $n=2$ to unity at $n=0$. We conjecture that this result is qualitatively correct.

 (8)

The calculation starts from the Ginzburg-Landau (GL) free-energy functional:

$$
F_{\text{GL}}\{\varphi\} = \int d^d r \left\{ \frac{1}{2} \sum_{i=1}^n \left[\tau \varphi_i^2 + (\nabla \varphi_i)^2 \right] + \frac{1}{4} n^{-1} \left(\sum_{i=1}^n \varphi_i^2 \right)^2 \right\}
$$

Here $\tau \propto (T - T_c)/T_c$, where T_c is the mean-field transition temperature. The order-parameter correlation function, or propagator, is given by

$$
g(\vec{r}) = \langle \varphi_j(\vec{r})\varphi_j(0) \rangle = Z_{\text{GL}}^{-1} \int \prod_i \left(d\varphi_i \right) \varphi_j(\vec{r}) \varphi_j(0) \exp\left(-F_{\text{GL}}\left\{\varphi\right\}\right),
$$

where $Z_{GL} = \int \prod_i (d\varphi_i) \exp(-F_{GL}(\varphi))$. We are interested in the Fourier transform $g(k)$, given by where

$$
g(k) = [\tau + k^2 + \sigma(k)]^{-1}, \qquad (1)
$$

with $\sigma(k)$ the self-energy function. The SCSA is defined' by the self-energy graphs of Fig. 1(a). The straight line depicts the fully dressed propagator; the wavy line represents the "screened" potential, $-(1/n)v(q)$, and is given by the Dyson equation of Fig. 1(b). In the usual way each dashed line is associated with a factor $-1/n$ and each closed loop with a factor *n* to give⁶

$$
\sigma(k) = \sum_{q} g(q) + (2/n) \sum_{q} \nu(q) g(\vec{q} + \vec{k}) + O(1/n^2), \quad (2)
$$

$$
\nu(q) = [1 + \pi_0(q)]^{-1},\tag{3}
$$

where

$$
\pi_0(q) = \sum_{p} g(p) g(\vec{p} + \vec{q}). \tag{4}
$$

To calculate the exponent η we work at the critical point, where $g(0) = \infty$. Then $g(k)$ takes the form

$$
g(k) = (Z^{-1}/k^2)(k/k_c)^{\eta},
$$
 (5)

with k_c and Z^{-1} constants, one of which we are free to choose. Substitution into Eq. (4) yields'

 $m²$ is the global value of α

$$
\pi_0(q) = Z^{-2} f(d, \eta) k_c^{-2\eta} q^{d+2\eta-4},
$$

4 - 2\eta > d > 2 - \eta, (6)

$$
f(\boldsymbol{d},\,\boldsymbol{\eta})\!=\!\frac{1}{(4\pi)^{d/2}}\,\frac{\Gamma(2-\eta-\frac{1}{2}\,d)\big[\,\Gamma(\frac{1}{2}\,d+\frac{1}{2}\eta-1)\big]^2}{\Gamma(d+\eta-2)\big[\,\Gamma(1-\frac{1}{2}\eta)\big]^2}
$$

and the inequalities on η ensure that the sum for $\pi_0(q)$ converges.

For small q, $\pi_0(q) \gg 1$, so that Eq. (3) gives $\nu(q) \approx [\pi_0(q)]^{-1}$. For large q, on the other hand, $\pi_0(q) \ll 1$, giving $\nu(q) \approx 1$. The intermediate region determining the changeover between these two regimes is given by $q \sim k_c$, where $\pi_0(k_c) = 1$. This fixes k_c . Hence we adopt the following form for $\nu(q)$:

$$
\nu(q) \simeq \begin{cases} Z^2[f(d,\,\eta)]^{-1}k_c^{2\,\eta}q^{4-d-2\,\eta}, & q < k_c, \\ 1, & q > k_c. \end{cases} \tag{7}
$$

Fortunately, the details of the way in which $\nu(q)$ levels off around $q = k_c$ only affects the determination of the constant Z and not that of η , which depends only on the small-q form of $\nu(q)$. This is a reflection of the fact that η is a universal (model-independent) function of n and d , wherea
Z is not.¹⁰ Z is not.¹⁰

To determine η we need the k-dependent part of the self-energy: From Eq. (2)

(6)
$$
\sigma(k) - \sigma(0) = (2/n) \sum_{q} \nu(q) [g(\vec{k} + \vec{q}) - g(q)].
$$

Using Eqs. (5) and (7) gives⁹

$$
\sigma(k)-\sigma(0)=(2/n)Z[g(d,\eta)/f(d,\eta)]k^2(k_c/k)^{\eta}-(\text{term in }k^2), \quad 2>\eta>0,
$$

where the term in k^2 comes from splitting the sum at $q = k_c$ in accordance with Eq. (7), and where

$$
g(d, \eta) = \frac{1}{(4\pi)^{d/2}} \frac{2}{\eta} \left(\frac{4-d-2\eta}{2-\eta} \right) \frac{\Gamma(1+\frac{1}{2}\eta)\Gamma(2-\eta)\Gamma(\frac{1}{2}\eta+\frac{1}{2}d-1)}{\Gamma(1-\frac{1}{2}\eta)\Gamma(\eta+\frac{1}{2}d-1)\Gamma(1+\frac{1}{2}d-\frac{1}{2}\eta)}.
$$

We can now find η by noting that $\sigma(k) - \sigma(0)$ is also given by Eqs. (1) and (5):

$$
\sigma(k) - \sigma(0) = Zk^2 (k_c/k)^{\eta} - k^2. \tag{9}
$$

Matching of the terms in k^2 in Eqs. (8) and (9) determines the constant Z (subject to the remarks above).

son equation for the screened potential.

Matching of the terms in $k_c^{\eta} k^{2-\eta}$ determines η via the condition

$$
f(d,\eta)=(2/n)g(d,\eta),
$$

giving

$$
\eta = \frac{4}{n} \left(\frac{4-d-2\eta}{2-\eta} \right) \frac{\Gamma(1+\frac{1}{2}\eta)\Gamma(1-\frac{1}{2}\eta)\Gamma(2-\eta)\Gamma(d+\eta-2)}{\Gamma(\eta+\frac{1}{2}d-1)\Gamma(1+\frac{1}{2}d-\frac{1}{2}\eta)\Gamma(2-\eta-\frac{1}{2}d)\Gamma(\frac{1}{2}d+\frac{1}{2}\eta-1)} + O(1/n^2). \tag{10}
$$

!

I call the solution of Eq. (10) $\eta_{sc}(n, d)$. Some special cases are of particular interest.

(i) The limit $n \rightarrow \infty$.—In the large-n limit η becomes small enabling us to replace it, to lowest order, by zero in the right-hand side of Eq. (10). This gives

$$
\eta_{sc} = \frac{4}{n} \left(\frac{4-d}{d} \right) \frac{\Gamma(d-2)}{\Gamma(2-\frac{1}{2}d) \Gamma(\frac{1}{2}d) \Gamma(\frac{1}{2}d-1)} \tag{11}
$$

 $n \gg 1$, in agreement with the results of Abe and Hikami' and of Ma.⁴ As expected, our result is exact to order $1/n$.

(ii) The case $d = 3$. Setting $d = 3$ in Eq. (10) yields

$$
\eta = \frac{16}{n\pi^2} \frac{1-2\eta}{(2-\eta)(3-\eta)} \frac{\pi\eta}{\tan(\pi\eta)} \frac{\pi\eta/2}{\tan(\pi\eta/2)}.
$$
 (12)

In the large- n limit one recovers the standard result³

$$
\eta_{sc} \simeq \frac{8}{3\pi^2 n}, \quad n \gg 1. \tag{13}
$$

Expanding to order $1/n^2$ gives

$$
\eta_{sc} = (8/3\pi^2 n) - \frac{7}{6} \left(\frac{8}{3}\right)^2 (1/\pi^4 n^2) + O(n^{-3}).
$$
 (14)

This should be compared to Abe's exact result² to order $1/n^2$:

$$
\eta_{\text{Abe}} = (8/3\pi^2 n) - \left(\frac{8}{3}\right)^3 (1/\pi^4 n^2). \tag{15}
$$

We see that the SCSA underestimates the coefficient of the $1/n^2$ term by a factor $\frac{7}{16}$. In fact it is interesting to note that Eq. (14) follows directly from including only graphs (a) and (c) of Abe's calculation. 2 This is to be expected since these graphs are nonskeleton, i.e., they result from making propagator self-energy insertions in lower-order graphs. Abe's graphs (b) and (d), on the other hand, are skeleton graphs and are therefore not included in the present calculation.

Equation (12) can be solved numerically for $\eta_{\rm sc}(n, 3)$. The result is shown in Fig. 2. Also plotted are the first-order result, Eq. (13), and Abe's result, Eq. (15). Particular values are $\eta_{sc}(3,3) \approx 0.079$ and $\eta_{sc}(1, 3) \approx 0.177$. High-temperature-series estimates¹¹ are somewhat lower: $\eta(3, 3) \approx 0.043 \pm 0.014$ and $\eta(1, 3) \approx 0.055 \pm 0.01$. I

conclude that the SCSA is unreliable for $n \leq 1$ as is to be expected of a large- n approximation. Note also that the η versus n curve should eventually bend over so that η vanishes¹² at $n = -2$.

(iii) The case $d=2$.—This case provides the most interesting application of the self-consistent method since the simple $1/n$ expansion breaks down here by virtue of the spherical model exhibiting no phase transition. One may attempt to circumvent this problem by performing the expansion for arbitrary d $(2 < d < 4)$ and taking the limit $d-2+$ at the end. In first order this gives $\eta = \epsilon/n$, $\epsilon = d - 2 \ll 1$ [as may be seen by setting d = $2 + \epsilon$ in Eq. (11)], leading to a vanishing η as ϵ = 2 + ϵ in Eq. (11)], leading to a vanishing η as ϵ
 \rightarrow 0. It has been conjectured,¹³ however, that this procedure will produce a nonzero result in second order. The present calculation does not support this view. Expanding our general result to 'order n^{-2} for $d=2+\epsilon$, yields $\eta_{sc}=\epsilon/n+2\epsilon/2$ $+O(n^{-3})$, i.e., the nonskeleton second-orde graphs vanish linearly as $d-2+$. Work in progress'4 indicates that this is also true of the skeleton graphs, not included here.

FIG. 2. The exponent η versus n for $d=3$. The SCSA, order $1/n$, and order $1/n^2$ results are labeled η_{sc} , η_1 , and η_{Abe} , respectively.

FIG. 3. The exponent η versus n for $d = 2$ within the SCSA. The exact solution of the two-dimensional Ising model, $\eta(1,2) = \frac{1}{4}$, is shown for reference.

Setting $d=2$ in Eq. (10) yields

$$
\eta = \frac{8\eta}{n} \, \frac{(1-\eta)^2}{(2-\eta)^2} + O\left(\frac{1}{n^2}\right),
$$

giving either the trivial solution $\eta_{sc} = 0$ or the nontrivial result

$$
\eta_{\rm sc} = (2/8 - n)[4 - n \pm (2n)^{1/2}].
$$

where the negative root must be taken to satisfy the conditions on η in Eq. (6). The result is shown in Fig. 3. For $n > 2$ one must take the trivial root $\eta_{sc} = 0$. The Ising-model result is shown for comparison. Since SCSA is essentially a large-n approximation one should not place too much faith in the numerical values it predicts for these small- n values. I conjecture that including higher-order terms in $1/n$ exactly will merely shift the value of *n* at which η vanishes. [Recent] work by Kosterlitz and Thouless¹⁵ predicts a transition for $n = 2$ with $\eta(2, 2) = \frac{1}{4}$ but no transition for $n=3$ and therefore presumably $\eta(3, 2)=0$. Here I assume that the vanishing of η at each order in $1/n$ for $d=2+$, which holds in the present model, is a general result. Note however, that the forms

 $\eta \sim 1/n^x$ (x nonintegral) and $\eta \sim e^{-n}$, for example, would lead to similar behavior and cannot be ruled out.

> It is a pleasure to acknowledge helpful discussions with Professor R. A. Ferrell. The award of a Fulbright-Hays scholarship is also gratefully acknowledged.

 1 R. Abe and S. Hikami, Progr. Theor. Phys. 49, 442 (1973).

 2 R. Abe, Progr. Theor. Phys. 49, 1877 (1973).

 3 R. A. Ferrell and D. J. Scalapino, Phys. Rev. Lett. 29, 413 (1972), and Phys. Lett. 41A, 371 (1972).

⁴S. Ma, Phys. Rev. Lett. 29, 1311 (1972), and Phys. Rev. A 7, 2172 (1973).

5E. Brezin and D. J. Wallace, Phys. Rev. ^B 7, ¹⁹⁶⁷ (1973).

6A. J. Bray and G. Rickayzen, J. Phys. F: Metal Phys. 2, L109 (1972), and 3, L134 (1973).

⁷The nature of this approximation and its extension to higher orders is discussed by A. J. Bray, to be published.

 8 The thermodynamic functions may still be evaluated, however: D.J. Scalapino, R. A. Ferrell, and A. J. Bray, Phys. Rev. Lett. 31, 292 (1973).

⁹Details of the calculation will be presented elsewhere.

 10 In Abe's calculation, using a discrete spin model, the constant 1 is absent in the analog of our Eq. (3). Consequently the small- q form of our Eq. (7) is valid in his model right up to the inverse lattice spacing φ .

¹¹Cited from K. G. Wilson, Phys. Rev. Lett 28 , 548 (1972).

 12 R. Balian and G. Toulouse, Phys. Rev. Lett. $30,544$ (1973).

 13 S. Doniach, Phys. Rev. Lett. 31, 1450 (1973); see also A. Aharony and Y. Imry, Bull. Amer. Phys. Soc. 19, 306 (1974). '

 14 R. A. Ferrell and A. J. Bray, to be published. In particular the second-order skeleton graph containing just two wavy lines has been evaluated for $2 < d < 4$ and is proportional to ϵ for $d = 2 + \epsilon$.

 15 J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Proc. Phys. Soc., London 6, 1181 (1973); J. M. Kosterlitz, J. Phys. C: Proc. Phys. Soc., London 7, ¹⁰⁴⁶ (1974).