relation $\mathbf{k}_{0} = \mathbf{k} + \mathbf{k}'$, where \mathbf{k} or \mathbf{k}' refer to the originally unstable modes. Two instabilities for which the instability criteria are met in the current sheath have angular dependences similar to those observed. They are the electron-cyclotron drift instability⁴ and the lower-hybrid drift² instability.

The authors are grateful for helpful discussions with H. R. Griem, N. A. Krall, and R. C. Davidson and for the technical assistance of W. Knouse and K. Diller.

*Work supported by the U. S. Office of Naval Research.

 1 Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Madison, Wisconsin, 1971 (International Atomic Energy Agency, Vienna, 1971), Vol. III.

 2 N. A. Krall and P. C. Liewer, Phys. Fluids 15 , 1166 (1972).

 3 K. Papadopolous, R. C. Davidson, J. M. Dawson, I. Haber, D. A. Hammer, N. A. Krall, and B. Shanny, Phys. Fluids 15, 849 (1971).

 4 D. Forslund, R. Morse, C. Nielson, and J. Fu, Phys. Fluids 15, 1303 (1972).

5M. Lampe, W. M. Manheimer, J.B. McBride, J. H. Orens, K. Papadopolous, R. Shanny, and R. N. Sudan, Phys. Fluids 15, 662 (1972).

 $6A.$ W. DeSilva and G. C. Goldenbaum, in Methods of Experimental Physics, edited by H. R. Griem and R. Lovberg (Academic, New York, 1969), Vol. 9.

 7 H. W. Drawin, Z. Phys. 225, 470 (1969).

 ${}^{8}C.$ C. Daughney, L. S. Holmes, and J. W. M. Paul, Phys. Rev. Lett. 25, 497 (1970).

 9^9 M. Kornherr, G. Decker, M. Keilhacker, F. Lindenberger, and H. Rohr, Phys. Lett. 39A, 95 (1972).

 10 H.-J. Kunze, H. R. Griem, A. W. DeSilva, G. C. Goldenbaum, and I.J. Spalding, Phys. Fluids 12, ²⁶⁶⁹ (1969).

 $¹¹A$. W. DeSilva, W. F. Dove, I. J. Spalding, and G. C.</sup> Goldenbaum, Phys. Fluids 14, 42 (1971).

 12 O. Buneman, Phys. Rev. 115 , 503 (1959).

Propagation of Fourth Sound in Superfluid ³He[†]

H. Kojima, D. N. Paulson, and J. C. Wheatley

Department of Physics, University of California at San Diego, La Jolla, California 92037 (Received 16 November 1973)

Pressure waves propagate through a superleak in both ${}^{3}He-A$ and ${}^{3}He-B$, showing that both are superfluids below T_c . Superfluid relative density is obtained from velocity measurements over a wide pressure range above and below the polycritical point.

We have shown using both transient and resonance methods that pressure waves propagate through a superleak in both 3 He-A and 3 He-B over a wide range of static pressure.¹ This is the first experimental proof of the superfluidity of both extraordinary phases of liquid 'He. Fourth sound, a pressure wave in superfluid 4 He with normal fluid locked in a porous medium, was first discussed by Pellam' and observed by Rud- $\frac{1}{11}$ and $\frac{1}{11}$ retically in a context of 3 He by de Gennes⁴ and Saslow.⁵ Measurements of fourth-sound velocity C_4 yield relative superfluid density \bar{p}_s/ρ via the equation

$$
\overline{p}_s / \rho = C_4^2 / C_1^2 , \qquad (1)
$$

where C, is the velocity of first sound⁶ and \bar{p}_s/ρ denotes a suitable average if the superfluid is anisotropic or if size effects are important, and where thermal effects³ have been neglected with sufficient accuracy for present purposes. Our measurements, extending down to $T/T_c \approx 0.8$,

show that $\overline{\rho}_s/\rho$ is quite small, varies slowly with temperature, and shows little or no detectable change near the first-order transition at T_{AB} ; this is in possible disagreement with the interpretation of the wire-damping experiments' and with a prediction⁸ relating $1 - \rho_s / \rho$ and zero-sound velocity, but is reasonably close to what one might expect from susceptibility⁹ measurements.

Our experimental epoxy cell, 2.63 cm long and 2.11 cm in diameter, was packed with cerium magnesium nitrate (CMN) powder (size less than 37 μ m) to 80% of crystalline density, the CMN being used as superleak, refrigerant, and thermometer. Each end was closed using a capacitive-type pressure transducer.³ For transient measurements a voltage step of 20-40 V was applied to the transmitting transducer; the receiving transducer was connected through a bandlimiting amplifier to an oscilloscope. For resonance measurements the transmitter was driven by the reference channel of a lockin detector; the receiver was connected to a preamplifier

FIG. 1. Response of receiving transducer to a step applied to the transmitting transducer showing the initial transit time and subsequent echoes of fourth sound for a pressure of 25.5 bar and $T/T_c = 0.89$. The receiving bandwidth is $300-10^3$ Hz, the horizontal sweep is 2 msec per main division, and twice the cell length is 5.25 cm,

and then to the lockin. For ⁴He measurements at low T the cell had a $Q > 500$, but for the ³He measurements the amplitude, though not the frequency, of the fourth-sound signal was history dependent and sensitive to pulse heating. We were unable to obtain information on intrinsic dissipation, not unlike fourth-sound measurements with 4 He.³

Typical response of the receiving system (bandwidth $300-10^3$ Hz) to a 40-V step at the transmitter is shown in Fig. 1. The step occurs at the extreme left of the trace; the receiver responds as shown, the time separation between adjacent maxima being the same within experimental precision as the reciprocal of the frequency of the corresponding fundamental resonance.

Precise measurements of \bar{p}_s/ρ were obtained as a function of temperature by measuring the first longitudinal resonance¹⁰ frequency f. Because of the reduction of the measured fourthsound velocity from that calculated using Eq. (1) by the effective index of refraction³ of the powder, we obtained $(\bar{\rho}_s/\rho)_{\rm 3He}$ using the equation

$$
\left(\frac{\bar{p}_s}{\rho}\right)_{s_{\text{He}}} = \frac{[(f/C_1)s_{\text{He}}]^2}{[(f/C_1)s_{\text{He}},r_{\text{e}}]^2},\tag{2}
$$

where the denominator was determined¹¹ by separate experiments at pressures from zero to the melting-curve minimum with the same mode in the same cell but with superfluid ⁴He near $T = 0$, where $(\rho_s/\rho)_{4\text{He}}$ is unity. Some of our measurements are shown in Fig. 2 as \bar{p}_s/ρ calculated from the experimental quantities in Eq. (2) ver-

FIG. 2. Experimental values of $\overline{\rho}_s/\rho$ obtained using Eq. (2) as a function of CMN magnetic temperature for 88.59 (filled circles), 27.56 (open circles}, 25.50 (filled squares), 28.09 (open squares), 20.69 (filled triangles), 17.²⁶ (open triangles), and 12.39 (plus signs) second-order transition temperatures $T_c\,^*$ are indicated by arrows on the horizontal axis. The expected locations of T_{AB} ^{*} are shown by arrows on the appropriate curves. The polycritical point is at \sim 21.7 bar.

sus the CMN magnetic temperature T^* . The phenomenon of a minimum magnetic temperature as absolute temperature T decreases is evident. The critical temperatures T_c^* were obtained thermally¹² for $P > 14$ bar and at lower pressures by extrapolating \bar{p}_s/ρ to zero and are shown by arrows along the axis in Fig. 2. The arrows marked BA on Fig. ² for pressures of 27.56, 25.50, and 23.09 bar (all above the polycritical point) are the expected positions of the B-A transition according to our susceptibility measurements.⁹ Although we expect from experience that 3 He-B would have formed for these pressures, there is no major change at T_{AB}^* evident either on this plot or, more sensitively, on plots like that of Fig. 3. Changes, if any, in $\overline{\rho}_s/\rho$ at T_{AB} are less than 5-10% as measured in this experiment.

By measuring T_c^* for ten pressures and comparing with the $P - T_c$ curve based primarily on our zero-sound measurements, 6 we obtained a $T-T^*$ relation for the present thermometer which we used to make reduced plots of $\ln \overline{\rho}_s / \rho$ versus $\ln(1 - T/T_c)$. These show little pressure dependence (probably less than 10%) and are sensitive to uncertainties both in T_c and in the $T-T^*$ relation. An example is shown in Fig. 3 for a pres-

FIG. 3. Logarithmic plot of $\overline{\rho}_s/\rho$ versus $1-T/T_c$ for a pressure of 88.59 bar (circles). Also shown are the values of $\overline{\rho}_s/\rho$ deduced from susceptibility measurements of Ref. 8 via Eqs. (8) and (4) for pressures of 20.8 (filled squares) and 29.9 bar (open squares), assuming the pressure independence of reduced plots.

sure of 33.59 bar, for which the liquid is entirely in the 3 He-A state. The data for all pressures are not badly represented by $\overline{\rho}_s/\rho \propto (1 - T/T_c)^{\alpha}$ with α in the range 1.1–1.3, although quantitative conclusions are weak because of uncertainties in the temperature scale and in the precise value of T_c and the possibility of size effects.¹³ With re- T_c and the possibility of size effects.¹³ With respect to the latter, experiments with a more open structure are now being contemplated.

Excluding Fermi-liquid effects, in weak-coupling theory for nonmagnetic pairs¹⁴ both the reduced nuclear susceptibility χ/χ_n , where χ_n is the nuclear susceptibility of the normal state, and $1 - \overline{\rho}_s / \rho$ are the same function $g(T/T_c)$, whether the superfluid is isotropic or not. Including Fermi-liquid effects, Leggett showed¹⁴ that for $L = 0$ pairing, one has

$$
\frac{\chi}{\chi_n} = \frac{(1 + \frac{1}{4}Z_0)g(T/T_c)}{1 + \frac{1}{4}Z_0g(T/T_c)},
$$
\n(3)

and

$$
\left(1 - \frac{D_s}{\rho}\right) = \frac{(1 + \frac{1}{3}F_1)g(T/T_c)}{1 + \frac{1}{3}F_1g(T/T_c)},
$$
\n(4)

where Z_0 and F_1 are Fermi-liquid parameters.¹⁵ Although weak-coupling theory probably does not apply and the Fermi-liquid corrections given in Eqs. (3) and (4) are probably not accurate for L

 > 0 pairing, we nevertheless hope to estimate $\overline{p}_s /$ ρ from experimental data for χ/χ_n using these formulas. We use the data of Ref. 8 and do not interpret 3 He-B as a Balian-Werthamer¹⁶ state since for the lowest T/T_c achieved there the value of χ/χ_n is much too low for that interpretation. We further assume approximate pressure independence and 3 He-A- 3 He-B independence of the data on a reduced plot. The resulting values of \overline{p}_s/ρ are shown on Fig. 3. The agreement is not quantitative, but might be considered reasonable in that near T_c changes in χ/χ_n are divided by a factor $(1+F_1/3)/(1+Z_0/4) \sim 20$ to 25 to obtain the corresponding changes in \bar{p}_s/ρ .

The small values for \overline{p}_s/p found in our experiment for $T/T_c > 0.8$ and the corresponding slight reduction in \bar{p}_n/ρ for this temperature region as well as the small, if any, change in \overline{p}_s / ρ at the A - B transition do not support the interpretation given by Alvesalo $et al.^{7}$ of their wire-damping experiment, barring gross size effects and some special sensitivity to fluid anisotropy which would be undetectable in our experiment. It is possible that in this temperature range the two-fluid model need not be introduced at all to explain within experimental error their measurements for T $> 0.8T_c$, which then would reflect both a decreasing viscosity and nonlinear effects, in disagreement with Seiden's theory" of viscosity but in qualitative agreement with heat-flow measurements.¹ Our measurements also disagree with the predictions of the phenomenological theory of Putterman, in which $1 - \rho_s / \rho$ should have the same temperature dependence as the reduce
velocity of collisionless sound.¹² Neverthele velocity of collisionless sound.¹² Nevertheles our work must be interpreted with care since we measure an angularly averaged value $\bar{\rho}_s/\rho$, and in a packed powder susceptible to size effects rather than in bulk fluid.

We thank Professor S. J. Putterman for his part in the motivation of this experiment and Evelin Pichelmann for participation in preliminary work. We are grateful to Professor I. Rudnick for helpful discussions and to Professor A. L. Fetter and Professor Bruce Patton both for discussing this experiment with us and for quantitative help on its interpretation.

⁾Work supported by the U.S. Atomic Energy Commission under Contract No. $AT(04-3)-34$, P.A. 143.

¹T. J. Greytak, R. T. Johnson, D. N. Paulson, and J. C. Wheatley, Phys. Bev. Lett. 81, ⁴⁵² (1978). This paper defines notation via a phase diagram.

 2 J. R. Pellam, Phys. Rev. 73, 608 (1948).

 3 K. A. Shapiro and I. Rudnick, Phys. Rev. 137, A1383 (1965).

 ${}^{4}P$. G. de Gennes, Phys. Lett. $44A$, 271 (1973).

 5 W. M. Saslow, Phys. Rev. Lett. 31 , 870 (1973).

 6D . N. Paulson, R. T. Johnson, and J. C. Wheatley,

Phys. Hev. Lett. 80, 829 (1972), and unpublished work, ${}^{7}T$. A. Alvesalo, Yu. D. Anufriyev, H. K. Collan,

O. V. Lounasmaa, and P. Wennerström, Phys. Rev. Lett. 80, 962 (1973).

 8.3 . J. Putterman, Phys. Rev. Lett. 30 , 1165 (1973). 9 D. N. Paulson, R. T. Johnson, and J. C. Wheatley, Phys. Rev. Lett. 31, 746 (1978).

 10 ^{The} second longitudinal resonance occurred at a frequency only $1-2\%$ greater than $2f$.

¹¹The quantity $(f/C_1)_{^4\text{He}, T=0}$ varied from 0.088 at zero pressure to 0.081 on extrapolating the pressure measurements to 34 bar. Values of C_1 for ⁴He were obtained from B. M. Abraham, Y. Eckstein, J. B. Ketterson, M. Kuchnir, and P. R. Roach, Phys. Rev. A 1, 250 (1970). At zero pressure the corresponding index of refraction is 2.16, rather different from the value of 1.34 expected from the empirical factor used in Ref. 3; however, both the powder and the packing are quite different from those used in Ref. 3.

 12 R. A. Webb, T. J. Greytak, R. T. Johnson, and J. C. Wheatley, Phys. Rev. Lett. 30, 210 (1973).

 13 M. Kriss and I. Rudnick, J. Low Temp. Phys. 3, 339 (1970).

 14 A. J. Leggett, Phys. Rev. 140, A1869 (1965).

 15 See J. C. Wheatley, Physica (Utrecht) 69, 218 (1973), for a recent compilation.

 16 R. Balian and N. R. Werthamer, Phys. Rev. $\overline{131}$, 1558 (1968).

¹⁷J. Seiden, C. R. Acad. Sci., Ser. B 276, 905 (1973).

Mass Diffusivity of 'He-4He Mixtures near the Superfluid Transition

Cuenter Ahlers

Institut für Festkörperforschung, Kernforschungsanlage, 517 Jülich, Germany, and Bell Telephone Laboratories, Murray Hill, New Jersey 07974*

and

Frank Pobell

Institut für Festkörperforschung, Kernforschungsanlage, 517 Jülich, Germany (Received 10 December 1973)

We report on measurements of relaxation times for the decay of isothermal concentra-We report on measurements of relaxation times for the decay of isothermal concentra-
tion gradients in ³He-⁴He mixtures over the temperature range $10^{-5} \le |\epsilon| = |T/T_{\lambda} - 1|$ $\leq 10^{-2}$. The data yield a mass diffusivity D which diverges when T_{λ} is approached from higher temperatures. When fitted with $D \propto \epsilon^{-z}$, they give $z = 0.40$, 0.36, and 0.33 for ³He concentrations 0.100, 0.208, and 0.399, respectively. The estimated uncertainty for z is ± 0.06 . These results are consistent with theoretical predictions, but differ from experimental results by others.

Recent measurements' of mass diffusion in dilute ³He-⁴He mixtures (³He concentration $X < 1\%$) seem to imply that the mass diffusivity D remains finite when the superfluid transition temperature T_{λ} is approached from higher temperatures. This behavior would be in conflict with theoretical predictions.²⁻⁶ We wish to report on measurements of relaxation times for isothermal concentration gradients in 'He-4He mixtures near T_{λ} . Our results are for molar ³He concentrations $X = 0.100$, 0.208, and 0.399, and for 10⁻⁵ tions $X = 0.100$, 0.206, and 0.399, and for to
 $\le |\epsilon| = |T/T_{\lambda} - 1| \le 10^{-2}$. Approaching T_{λ} from higher temperatures, they reveal a divergent D with critical exponents which, within the uncertainties of theory and experiment, agree with the predictions^{3,4} of dynamic scaling^{2,3} and of modemode -coupling calculations. '

^A schematic diagram of our sample cell is shown in the inset of Fig. 1. Most of the mixture is contained in the 0.50-cm-long holes of 0.11 cm diameter in part A . These holes have a centerto-center spacing of 0.14 cm, and yield a 50% transparency. In addition there are two 0.10-cmhigh spaces filled with sample, one each above and below the perforated center section of part A. These spaces each contain a capacitor to be used for high-precision measurements of the concentrations of the mixture at the ends of our sample cell. One plate of each capacitor is shown as part B or part B' . The other, shown as a dashed line, was a sheet of 0.012-cm-thick stainless steel, perforated by 0.012-cm-diam holes with a 0.025 cm center-to-center distance $(37\% \text{ trans}$ parency).⁷ The spacings between the capacitor

FIG. 1. Response of receiving transducer to a step applied to the transmitting transducer showing the initial transit time and subsequent echoes of fourth sound for a pressure of 25.5 bar and $T/T_c = 0.89$. The receiving bandwidth is 300-10³ Hz, the horizontal sweep is 2 msec per main division, and twice the cell length is 5.25 cm.