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The He magnetic form factor is calculated in the impulse approximation using a wave
function obtained previously from a complete solution of the Faddeev equations vrith the
Beid soft-core potential. The 8-D matrix elements contribute significantly. The convec-
tion current contribution is found to be small. The form factor has a minimum at g2= 7.1
fm 2.

Calculations of bound-state properties of the three-nucleon system are a useful means for studying
the nucleon-nucleon interaction. Of particular interest are electromagnetic form factors, which for
large values of the momentum transfer should depend sensitively on the short-range nuclear potential.
%e have previously reported' on a complete solution of the Faddeev equations' for 'He using the entire
Reid soft-core potential. ' In this paper we use the resulting wave function to calculate the 'He magnet-
ic form factor, I'»„- "'. To our knowledge, this is the first complete Faddeev calculation of I'»~ "'
which involves realistic nuclear forces, off-diagonal S-D contributions, and the nucleon convection
current.

In calculating I »~, we use the usual impulse approximation and nonrelativistic reduction of the
nucleon-current matrix elements. "Contributions from meson-exchange currents are neglected. A
convenient expression for F~„G ' is obtained if we (a) use the fact (following from charge-current
conservation) that only the component of the nucleon current perpendicular to the electron momentum
transfer Q contributes, (b) orient our coordinate system so that Q lies in the ~ direction, and (c) choose
the z axis as the quantization axis for magnetic quantum numbers. %e then find that

I'~AG'"'(0') =(3/0)Jd'p, Jd'v, g*(P„q, -Q/~3)J„'"g(p„q, ), (1)

where tl (p„q,) is the 'He center-of-mass momentum-space wave function with g =g, = —,'. (Spin and
isospin variables are not indicated. ) The momenta, p, and q„are given in terms of the nucleon mo-
menta k,. by

p, = g(k, —k, ), q, = (k, + k, —2k, )/2 v 3. (2)

Z, ~'& is the y component of 3+, the momentum matrix element of the current operator for nucleon 1,
consisting of convection and magnetic -spin-current contributions":

' + Z ' = —[(4/v 3)q + q ]8 + i ((r x q) p

o, is the Pauli spin operator for nucleon 1 and

ei =fcH'(0') $(1+ &."')+fcH"(0') a(1 —&.'"),

v, = [+ 2 7»f ~AG'(0')] 3(1+ &. '")+ [-1.913fa AG" (O')]-'(1 —&."').

(3)

fcH(Q') and f„,„o(Q') are, respectively, the charge and magnetic form factors for the appropriate nu-
cleon, which we take to be the analytic forms of Janssens et aE.'

We have calculated E~„o "'(Q') numerically using the 27 components of g(p, q) as given in Ref. 1.
Ne find that the P-wave components contribute negligibly and can be ignored.

The results of using only the spin term of J" are shown in Fig. 1 in order to make comparisons
with earlier works. ' ' The dot-dashed line, with a minimum around 14.7 fm ', is the form factor giv-
en by the S-wave components of the 'He wave function alone. There is good agreement between this
curve and the results of Ref. 8. (Strict comparisons should not be made since more S-wave compo-
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FIG. 1. 3He magnetic form factor with only the jo
x Q term in Ti ~ &. The solid-circle data points are
from Ref. 10 and the open-circle points from Ref. 11.
The dot-dashed curve includes only 8-wave compo-
nents of the wave function. The solid and dashed curves
represent all components, with and without off-diago-
nal matrix elements, respectively.

Q {fm )

FEG. 2. He magnetic form factor. The data points
are the same as in Fig. 1. The solid curve gives the
total magnetic form factor, while the dashed and dot-
dashed curves represent the contributions from the
convection and iox Q terms in J~ ~ &, respectively.

nents are included in the present calculation. } The dashed curve is calculated using all wave-function
components but neglecting contributions from off-diagonal matrix elements. The addition of these con-
tributions results in a shift of the minimum from about 13 to 7.8 fm . This downward shift in the
minimum, due mainly to S-D matrix elements, is in qualitative agreement with the results of Hadji-
michael and Barroso. "

In Fig. 2, the solid curve gives IE~„o'"'(Q') I calculated with the total J "&. The separate contribu-
tions from the spin and convection-current terms are plotted as dot-dashed and dashed curves, re-
spectively. All three curves are renormalized so that IE~„~ "'(Q'=0) I=1. The effect of the convec-
tion current is to shift the minimum from 7.8 to 7.1 fm '.

The calculated (unrenormalized) form factor, extrapolated to Q'=0, is in good agreement with the
single-particle contribution to the 'He magnetic moment (= 1.74'„) calculated using the wave function
probabilities of Ref. 1. If we neglect P(P), the small P-state probability of the He wave function, the
single-particle contribution is given by

'"'(Q' = o) =
&

"'('He) = ~,'" —u „"',

where

&&,
' = a(p~+ p. „)[P(S)+P(S') P(D)]+ 2P(D), —p, „' = z(p~ —p„)[P(S)—3P(S')+ ~3P(D)j —SP(D),

jtLp= 2.793/, ~ ~ ILlt„= —1.913+~.
(6)

In Harper et al,." it is shown that most of the discrepancy between the single-particle contribution and
the experimental magnetic moment (2.128'„) can be accounted for by two-body meson-exchange cur-
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rents calculated in the one-pion-exchange approximation. The same contributions to the magnetic form
factor at nonzero Q- values may account for the lack of a minimum in the experimental data. "" Me-
son-exchange corrections as calculated by Hadjimichael and Barroso" indeed indicate that this may be
the case. However, Hadjimichael 2nd Barroso use an approximate method for obtaining the He D-
state component which may not be very accurate. " This may, in part, account for the fact that their
exchange correction extrapolated to Q =0 from their Fig. 2, of about 0.28'„, is considerably less
than the amount (=0.88p.„) required to fit the experimental magnetic moment. In any case, there is a
need for calculating meson-exchange-current corrections more accurately. Also, the accurate mea-
surement of IE„,„„- '"(Q')

I for Q' & l2 fm ' would be extremely valuable.
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