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Slowing Down of lons by Ultrahigh-Density Electron Plasma
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The slowing down of ions by a. degenerate electron plasma is calculated by means of the
random-phase approximation. It is shown that high compressions greatly reduce the abil-
ity of electrons to slow down ions. These results indicate that nuclear burning of a DT
plasma can proceed as a chain reaction, even at lo~v temperature, at densities about 10~

times the solid density.

It was shown long ago by Fermi and Teller'
that a degenerate electron gas loses its efficiency
for stopping heavy charged particles when the
velocity of the latter falls below the velocity of
the electrons at the Fermi surface. Some years
later, Qryzifiski' pointed out that if the Fermi
surface were raised high enough when compress-
ing a DT plasma, then energetic ions resulting
from nuclear reactions would give their energy
mostly to other ions by nuclear collisions, rather
than to electrons as usual. They would thus pro-
duce shomers of fast ions, some of which could
undergo further fusion reactions. In this fashion,
DT fusion could proceed as a fast chain reaction,
rather than as a thermonuclear reaction. Gryzin-
ski's calculations, however, mere fraught with

many errors and attracted only scant attention. '
There has recently been a renewal of interest

in fast charged-particle reactions in a plasma, "
in view of claims that laser-driven implosions
might yield densities 10' times the normal solid
density. " We have investigated the critical con-
ditions to reach a fusion chain reaction (detailed
calculations will be published in a separate pa-
per) and have found that the slowing down due to
electrons appears in the transport equations via
the expression

7(E;) = (1/E;) .f(E, —Ef)da(E;, E,), '

where do(E, , Ez) is the effective cross section for
scattering an ion with initial energy E,. into the
final energy range F.

&
to E&+dI;&. Note that v. has

the dimensions of an area. Its physical meaning
is given by the energy-range relationship dE/dx

Ejl 7 ~

In order to compute ~, we consider a high-den-
sity electron gas at zero temperature, with a
compensating static positive background due to
the plasma ions. The electron density is assumed
to be much larger than a, ', where a, = Pi'/me'

is the Bohr radius for an electron of mass m and

charge —e. We now consider an ion of mass M,

charge Ze, and initial energy E,. = MU, '/2 being
scattered by the electron plasma. In the Born
approximation, the differential cross section for
the ion scattering is given by

d'0 2Z'e'&j
dAdq A F. ,q' 'l f~

(2)

where A=K, —Ef is the energy transfer, kj is
the momentum transfer, and

S-, ((u)= j d&e"'&p„-(t)p -, (O))

is the electron plasma form factor. Here, p-„de-
notes the Fourier transform of the electron par-
ticle density p(r) and the angular brackets denote
an ensemble average. The energy loss of the
ion is then given by

(4)

where V is the volume of the plasma and the lim-
its of integration are determined by the ion-elec-
tron collision kinematics.

Since our plasma is very dense, namely, much
denser than a metallic electron plasma, the ran-
dom-phase approximation (RPA) should yield a
very accurate result for the form factor $-„(v).
It is convenient to express S„-(~) in terms of the
dielectric function e „-(&u):

e-, ((u) = 1—
(VF —F-+fw '

v+~ t

where E~= h'p'/2m is the electron energy, and
j'~ is the Fermi distribution. Using dimension-
less variables y

= q/2p, and x = ~/4E„where p,
= (Sw'n, )'~' is the Fermi wave number and E,

S-„(u)) = (2a V/v, )Im[l/c;((u) J,

where v, = 4we'/k' is the Fourier transform of the
Coulomb interaction of the electrons. The RPA
dielectric function is given by'
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S&owing-do~ cross section T as a function of ion energy E, for n, = 3.0' to 10'" cm ~, for {a) deuterons,
{b) tritons, and {c)& particles.

=h'p, '/2m is the Fermi energy, we obtain

-, (&/5) = 1 —(y, '/y')[R(z )+R(z, )J

—i(y, '/y')f (y, x),

with z, =y+x/y, and y, '=~'/4p, '= I/ma, p, . Note
that y, is the inverse Thomas-Fermi screening
length v in units of 2p, . In Eq. (7) we used

and

R (z) = —,
' [(1 —z') ln

~
(1 —z }/(1+z)

~

—2z J

f(y, x) = —~x/2y for z, ' =1,
= —w(1 —z ')/By for z '-1

and z, '&1,

= 0 otherwise.

(8)

(S)

x) py
—(m/M)y', (10)

give essentially x ~ Py, where P =ma;/hP, is the
ion-to-electron velocity ratio. Thus the integra-

Note that in the long-wavelength limit, the static
dielectric function e tends to 1+y,'/y' and the
dynamic one to 1 —x,'/x', where x, = h&u~/4E, is
the plasma frequency w~, in our units. However,
since the integrals of Eq. (4) cover the whole
range of q and b, , we have to use the complete ex-
pression for e in Eq. (7) while integrating the
cross section to find the energy loss.

Because of the large ion-to-electron mass ra-
tio, the kinematic limitations on the energy and
momentum exchange, namely

and at very high density (y, «1) behaves as Inn,
rather than as n„ for nondegenerate plasmas.
(b) For fast ions we obtain the classical expres-
sion

d E/dx = —(2sllJZ'e'n, /m E,) lnP'. (12)

Figure 2 depicts the energy loss as a function
of P for three types of calculation: Thomas-Fer-
mi cutoff, static dielectric function, and dynam-
ical screening (RPA). The latter is seen to de-
viate most markedly from static calculations
when the ion velocity becomes larger than that of
electrons. Apparently, the electron cloud is then
unable to follow and screen the ion.

Let us nom draw some conclusions from Fig. 1:
As nuclear cross sections are of the order of

tions in the xy plane are limited by Eqs. (S) and

(10}, and the region where the cross section does
not vanish is severely restricted by the electron
degeneracy. This makes the plasma more A ans-
Parent to ions than classical calculations would
indicate. '

We have calculated numerically the energy loss
for deuterons, tritons, and n particles, using Eq.
(4). The results are shown in Fig. l. The two
extreme limits, namely, slow (p «1) and fast
(P» 1) ions, can be handled analytically to yield
the following expressions'. (a) For slow ions the
energy loss is linear in p,

dE Z'E~ ~
p ln(1+ ')

dx 3a &+y

i300
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barns„ it is clear that electrons dominate the
slowing-down process for densities much below
10" cm ', but become negligible for densities
much above 1028 cm '. Somewhere between these
two values lies the critical density for a fusion
chain reaction. Detailed numerical calculations
indeed confirm this estimate (the exact value de-
pends on the fraction of the neutron energy de-
posited in the DT pellet, i.e., on the volume of
the latter). The density required then is about 1

order of magnitude higher than densities hitherto

0.1 1.0
P= v;/vo

FIG. 2. Proton energy loss for n, =102 cm ~ as a
function of velocity ratio P for three methods of calcula-
tion: dynamical screening (RPA), static self-consistent
screening (SS), and Thomas-Fermi static screening
(TF).

contemplated in laser fusion. On the other hand,
a high temperature is not required. Further cal-
culations and experiments are clearly needed to
decide which approach (high temperatures or
high densities) is more promising. "
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dZ 4 2~m ' ' 3Pr)' '' -8 l-l' """ 2Z'. 'l4, «')
It appears that a fusion chain reaction may proceed in
a nondegenerate DT plasma at temperatures of a few
keV, at densities like those currently contemplated in
laser fusion. However, larger DT pellets would be nec-
essary to have an appreciable fraction of the 14.1-MeV
neutron energy deposited in the plasma.
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Infrared studies of thin films of TTF-TCNQ are analyzed to obtain the frequency-de-
pendent conductivity. In the metallic state the resu1ts indicate an energy gap (0.14 eV)
with a collective mode at zero frequency. Below 58 K the conductivity peak moves away
from zero frequency into the far infrared.

In earlier studies, it was proposed that above
58 K TTF-TCNQ is a one-dimensional (1D) met-
al exhibiting strong electron correlations such
that the conductivity greatly exceeds the limita-

tions of single-particle scattering. ' ' This I et-
ter describes infrared measurements on thin
films of TTF-TCNQ which span the frequency
range between the previous experiments.


