
VOLUME 32, NUMBER 23 PHYSICAL RKVIKW LKTTKRS 10 JUNE 1974

and stimulating discussions with Dr. V. L. Ja-
cobs, Dr. N. F. Lane, Dr. H. C. Goldwire, and

Dr. R. D. Rundel. The authors wish to thank Dr.
V. L. Jacobs and Dr. N. F. Lane for providing un-
published results for inclusion in Table I.

~Research supported by the Atomic, Molecular, and
Plasma Physics Section of the National Science Founda-
tion under Grant No. GP39024, and the Atomic Energy
Commission under Contract No. AT-(40-1)-1316 Task B.

~R. F. Stebbings, F. B. Dunning, F. K. Tittel, and
R. D. Rundel, Phys. Rev. Lett. 30, 815 (1973).

A. Dalgarno, H. Doyle, and M. Oppenheimer, Phys.
Rev. Lett. 29, 1051 (1972).

3V. L. Jacobs, Phys. Rev. A 4, 939 (1971).
D. W. Norcross, J. Phys. B: Proc. Phys. Soc., Lon-

don 4, 652 {1971).

A. Burgess and M. J. Seaton, Mon. Notic. Roy.
Astron. Soc. 120, 121 (1960).

V. L. Jacobs, private communication.
T. Hartquist and N. F. Lane, private communication.
R. F. Stebbings and F. B. Dunning, Phys. Rev. A 8,

665 (1971).
R. D. Bundel, F. B. Dunning, J. S. Howard, J. P.

Riola, and R. F. Stebbings, Rev. Sci. Instruln. 44, 60
(1978).

R. D. Rundel, F. B. Dunning, and R. F. Stebbings,
Rev. Sci. Instrum. 45, 74 (1974),

E. D. Stokes, F. B. Dunning, R. F. Stebbings, G. K.
%alters, and R. D. Rundel, Opt. Commun. 5, 267 (1972).
"F.B. Dunning, E. D. Stokes, and R. F. Stebbings,

Opt. Commun. 6, 63 (1972).
R. D. Rundel, K. L. Aitken, and M. F. A. Harrison,

J. Phys. B: Proc. Phys. Soc., London 2, 954 (1969).
See, for instance, H. M. Gibbs, Phys. Rev. Lett. 29,

459 (1972).
V. L. Jacobs, Phys. Rev. A 9, 1938 (1974).

Renormalization&roup Calculations of Divergent Transport Coefficients at Critical Points

B.I. Halperin and P. C. Hohenberg
Bell Laboratories, Murray Bill, ¹~Jersey 07974

E. D. Siggia*
DePartment of Physics, Hazard University, Cambridge, Massachusetts 02138, and Bell Laboratories,

MNrvey Hill, Nese Jersey 07974
{Received 8 April 1974)

Recursion relations correct to lowest order in & =4 —d are obtained for simple models
representing the critical dynamics of a binary liquid, a Heisenberg antiferromagnet,
superfluid helium, and related systems. The exponents for the divergences of the trans-
port coefficients satisfy the "scaling" relations predicted by mode-mode coupling theory.
The viscosity of the binary liquid is predicted to diverge as f~

'~ near d =4, which is a
new result.

Recently the renormalization-group method'
has been employed to calculate dynamic critical
exponents for time-dependent Ginzburg-Landau
models with Hermitian Liouville operators. ' As
pointed out by Kawasaki and by Kadanoff and
Swift, ' the transport coefficients in such models
cannot diverge; on the other hand, more general
models, with non-Hermitian Liouville operators,
may possess divergences in their transport coef-
ficients, brought about by the nonlinear couplings
of their hydrodynamic modes near the critical
point. 4' %e have constructed two simple models
of the latter type —the first representing the
phase-separation point of a binary fluid or the
critical point of a pure fluid, and the second a
"planar ferromagnet, " a Heisenberg antiferro-
magnet, or superfluid helium. Analysis of these
models using the renormalization-group method
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where |F (x, f) is a scalar order parameter, j (x, t)
is the transverse part (TP) of a d-component vec-

and the e expansion" yields divergent transport
coefficients and sealing relations, which agree
in most respects with the predictions of the mode-
mode coupling approach of Kawasaki, ' Kadanoff
and Swift, ' and others. In addition we have ob-
tained values for the exponents of the transport
coefficients in the binary liquid near four dimen-
sions, which are new results.

Model I is defined by the equations
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= —21},V'6(x -x')5(t —t')6 „ (2b)

Fluctuations in (t and j are confined to wave vec-
tors k less than a cutoff A.

The above model, with (j( denoting concentra-
tion fluctuations and j the momentum density, is
a simple representation of a binary liquid, which
is incompressible, symmetric about the critical
concentration, and neglects heat flow. It is
equivalent near T, to the model in Eqs. (3.25a)
and (3.25b) of Ref. (4). The parameters 1},and

represent "bare" values of the viscosity and

of the transport coefficient for concentration fluc-
tuations. The mass density and the temperature
have been set equal to unity, and g, = 1 in these
units. The aim of the present investigation is to
calculate the exponents for the k-dependent "phys-
ical" transport coefficients A-k "~, g -k "& at
T„ for k «A. For 1 & T„A is replaced by I(.,
the inverse correlation length. The equilibrium
distribution of (t and j is proportional to e r.
Since (t( and j are uncoupled in F, the equilibrium
properties are clearly the same as for the Ginz-
burg-Landau-Wilson model. '

We have constructed recursion relations' for
(1) under the action of the dynamic renormaliza-
tion group. " These relations, which we believe
to be correct to first order in c = 4 —d, are given,
at T„by

A, „=b' '(A, + 1}, 'g('~3Klnb),

1i, „=b' '(1},+ A, 'g, '~Elnb),

(Sa)

, ys -3+& f2' (Sc)

where 6 is the dilation factor for the length scale,
b' is the scaling factor for frequencies, the scal-
ing factors for j and (t( are chosen to preserve the
second and fourth terms in (1c), and Ii = (Bn') '.
The recursion relations (3) are derived' from a
diagrammatic expansion in the "vertices" g, and

u„such as the one described by Martin, Siggia,
and Rose. ' The relevant diagrams to first order
in e are similar to those leading to Eqs. (4.56a)
and (4.56b) of Kawasaki, ' and do not involve u, .

The three recursion relations may be reduced
to one equation for the ratio f, =—g,'!g, A, , whose
fixed point is f*=g K 'e. . The condition for

tor field, and A„g„, rt„r„and u, are constants.
The functions6 and P are Langevin noise sources
satisf ying the relations

(8(x, t)6(x', t'))= —2A, V'6(x -x')b(t —t'), (2a)

(P.(x, t)g„,(x', t')&

Eq. (3a) to have a fixed point A.* is then

z —4= -gKf* = -~ e. .18

But z is the characteristic exponent for the or-
der -parameter relaxation rate'

v
&

——(A/A &)k' -Ak' "-k',
where q, the usual exponent for the order-pa-
rameter static susceptibility )t&(k), is of order

It follows that

x A =g &+ O(e').

By transforming the scaled recursion relations
(Sb) and (3c) back to the original physical scale,
one also finds the exponent for the viscosity,

X ~=~f + O(E ).

= —21O —igo(t + &,
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(g(x, i)f(x', t'))= —2A, V'b(x -x')b(t —t'). (Be)

The exponent values in (5) and (6) represent new

results, which disagree with the statement in
Ref. 4 (p. 41) that 1i remains finite at T, . The
practical significance of our result for x—

„, is dif-
ficult to assess, however, since terms of higher
order in ~ may change the value significantly for
d = 3, and present-day experiments do not dis-
tinguish between a slightly positive or slightly
negative exponent. '

The mode-mode theory" leads to a general
relation for the transport coefficients, ' which

may be written, for arbitrary d, as a "scaling
relation" between exponents, namely

Xy+ XT= & —'g. (7)

[Note that x-„ is the exponent for the ordinary
(low-frequency) viscosity. ] Equation (7) is obeyed
by the values obtained in (5) and (6). Moreover,
a preliminary analysis of corrections to the re-
cursion relations (3) of higher order in c, simi-
lar to that given by Wilson and Kogut for the stat-
ic properties, ' indicates that (7) will hold to all
o~de~s in ~, provided that no unforeseen diver-
gences arise in the theory.

Our second model (planar ferromagnet"} may
be written as
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Here the order parameter g(x, t) is a complex
field, representing the (nonconserved) ~ and y
components of the magnetiza, tion, while m(x, f) is
the z component of magnetization, which is con-
served. [As in (1), the heat-flow mode has been
neglected. ] Recursion relations may be derived
for this model, as before. The dynamic critical
exponent z for the order parameter, and the ex-
ponent for the divergence of the transport coeffi-
cient A., are found to be

8 = 2 —.y g
= 2 —

g E = d /2.

Model H may also be extended to the case of a
Heisenberg antiferromagnet, where g and m

each have three real components, and the same
results (9) are obtained. Equation (9), which
coincides with the result of mode-mode coupling
[Eq. (4.47) of Ref. 4] and of dynamic scaling" for
these models for arbitrary d, appears to be cor-
rect to all orders in ~, on the basis of renormal-
ization-group considerations. ' The result (9) al-
so agrees with a microscopic analysis of the
quantum-mechanical Heisenberg antiferromagnet,
carried out in the limit of long-range forces,
where the static properties are those of the Gauss-
ian model. "

Equations (8) possess a symmetry between m

and —m appropriate to a planar ferromagnet in

zero external field. A more general model, ap-
propriate to the case of finite field in the z direc-
tion, has a term in E proportional to m

~
&~', and

also includes the possibility of an imaginary part
to the coefficient I', in (Ba). We have developed
recursion relations for such a model, and we

find for the dynamic exponents

8 = 2 —x ), + &/ p = ~p(d + Q / v),

where e and v are the usual exponents for the
specific heat and correlation length, and o/v
= ~a+ G(e ). These results again coincide with
the predictions of dynamic scaling" and of mode-
mode coupling" [e.g., Eq. (4.45) of Ref. 4] for
this system, which state that (10) should hold if
o & 0, while (9) is valid for a & 0.

The asymmetric planar magnet is a simplified
model for the order-parameter and heat-flow
modes af He' near its A. transition. "'"'" The
variable m is then proportional to fluctuations in
the energy of the liquid and A is the thermal con-
ductivity. A more complete model for helium
should also include the separately conserved den-
sity and momentum fields (cf. model I) which
lead to first-sound and viscous-relaxation modes

in the hydrodynamics. On the basis of dynamic
sealing"'" and mode-mode analyses, "however,
it is believed that the simplified model already
gives the correct exponents z and x„.

Attempts by a number of authors"'" to derive
the critical dynamics of superfluid helium start-
ing from the microscopic Hamiltonian for a Bose
liquid have so far not led to a derivation of the
scaling result (10) or (9). Most recently, " an

attempt to extract the dynamic critical exponent
z for the Bose fluid directly from the microscop-
ic perturbation expansion for the self-energy,
using the same diagrams as are necessary to
calculate the static exponent q to order ~', has
yielded results in disagreement with (10). We
believe this microscopic calculation to be incor-
rect because it fails to treat the conservation
laws and hydrodynamic modes in a proper man-
ner. Specifically, since the interaction is taken
to zero as d -4, the mean free path of the bosons
becomes infinite, and the range of validity of hy-
drodynamics is confined to smaller and smaller
k. Presumably, the true dynamic critical behav-
ior is also confined to very small k, and it may
not be passible to extract critical exponents from
a matching condition on the ink terms in a per-
turbation series which holds for ~ -0, at fixed k.
The various parameters entering the recursion
relations for the asymmetric planar ferromagnet
in fact correspond to five "slow transients, "
whose coefficients must be properly adjusted in
order to obtain the correct answer from a match-
ing condition.

From another point of view, if one attempts to
construct recursion relations directly for the dy-
namics of the Bose Hamiltonian, similar to those
discussed here or in Ref. 2, one immediately en-
counters a difficulty: After the first iteration,
the interaction u, acquires a singular dependence
on frequency and wave vector as k -0. This
pl.oblem was also discussed in Ref. 2, in connec-
tion with the classical dynamics of a system of
coupled anharmonic ascillators, a model for a
displacive transition in a solid. The philosophy
of the mode-mode approach suggests that the ap-
propriate way to eliminate these difficulties is to
introduce explicitly an auxiliary dynamic field,
such as j or m in the present paper or the energy
density in Ref. 2, and to develop the renormaliza-
tion group for the order parameter and the aux-
iliary field simultaneously. The fact that the cal-
culations of the present paper confirm relations
(7), (9), and (10) may be taken as a consistency
check on the mode-mode philosophy. "
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The multicomponent Bose gas, which has been
discussed recently by a number of authors, "dif-
fers in certain respects from the helium case,
and will be considered in a separate paper.
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Critical Qow velocities measured by Doppler-shifted third sound in unsaturated helium
II films are shown to exhibit a well-defined maximum as a function of film thickness and
at this maximum to be considerably higher than those usually found in film flow. In ad-
dition the critical velocity is strongly temperature dependent belo~ the maximum and rel-
atively temperature independent above.

It is a well-known observation that the critical
flow velocity in superfluid helium increases as
the channel width or film thickness, d, decreas-
es." Many relations such as V„=d '' cgs (the
Leiden critical velocity)' and V„=S/md (the Feyn-
man critical velocity)' have been suggested in the
literature. On the other hand, when d becomes
so small that it approaches the onset thickness
for superflow, V„must vanish. ' These observa-
tions imply that at some intermediate thickness
V„has a maximum value, a result which, while
recognized, seems never to have been explicitly
stated in the literature and certainly never di-
rectly observed. Using Doppler -shifted third
sound in unsaturated films we present here the
first direct observations of this maximum and

find it can be considerably higher than values
usually associated with film flow.

The experimental apparatus is shown schemat-
ically in Fig. 1 and described briefly below. An
unsaturated film is condensed onto the tubular
glass substrate which has outside diameters of
0.395 and 1.625 in. at the top and bottom sections,
respectively. The surface of the entire glass
substrate was flamed smooth and a nonsealing
soap fillet provides a smooth transition from the
glass surface to the copper housing. A heater at
the top drives the film up from the larger bottom
section. Evaporation from the heater, reconden-
sation on the copper walls, and flow back to the
bottom section complete the cycle. A supply of
Al,O, powder (500-A grain size) acts as a film


