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fits stem from the assumption that the number of
Bloch walls pinned at temperature T is described
by a Lorentzian function. Although this assump-
tion is quite plausible, it would be reckless to
view the agreement as a verification of the the-
ory.

If the spacing of the Bloch walls at Tc is & 10 4

cm for a sample with a j.-cm' cross section, then
n(~, ) & 10' walls/cm'. Gait et af."measured the
frequency dependence of the initial permeability
in magnetite (Fe,O,) and in NiFe, O„and deduced
appreciably different values of Ig for the two sam-
ples, 0.406 and 0.026 gcm 'sec ', respectively.
If P=1.0 gcm 'sec ' represents an upper limit
on the damping constant, then one could assume
that s/P 2 10' for Dy and Tb samples. We can,
therefore, infer from the values of nf;3 given in
Table I that the Tb absorption was nearly on-
resonance (f = 1) in zero applied field, whereas
the Dy absorption was far off-resonance (f«1)
in zero applied field. Apparently, application
of the magnetic field in Dy causes changes in

m„P, and a„such that the domain walls are
more nearly brought into resonance with the
sound wave. This possible explanation of the
seemingly contradictory zero-field observations
is, of course, pure speculation. Further theo-
retical interpretation must await a careful in-

vestigation of the spectral dependence of the at-
tenuation.
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Antiferromagnetic nickel sulphide has a small temperature-independent magnetic sus-
ceptibility. The ordered moment per nickel atom, measured with neutrons, decreases
from 1.45pg to 1.00&,g at 4.2 K with a decrease of 0.6% in the Ni-Ni distance. These data
indicate a band model for the 3d electrons, making NiS an itinerant-electron antiferro-
magnet with no local moments. The possibility of local moments in an antiferromagnetic
metal is briefly discussed.

The existence of itinerant-electron antiferro-
magnetism has been established with certainty in
only a, few materials, notably chromium metal. '

An antiferromagnetic metal is predicted as an in-
termediate state between the antiferromagnetic
insulator and the Pauli-paramagnetic metal as
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FIG. 1. Temperature dependence of (a) the conduc-
tivity and (b) the magnetic susceptibility of a stoichio-
metric crystal of hexagonal nickel sulphide.

some parameter such as the lattice constant or
the intra-atomic Coulomb interaction is varied. '
Nevertheless, it does not occur in the most ex-
tensively studied metal-insulator transition sys-
tem (V, ,Cr, ),O„' probably because the jump in

the lattice parameter at the transition is such
that the itinerant-electron antiferromagnetic
state would appear in the "lost volume. "' In this
Letter, we present evidence to show that nickel
sulphide is an itinerant-electron antiferromagnet
below its first-order magnetic ordering tempera-
ture' T„changing to a metal with a very short
spin-spin correlation time above T,. Qur sus-
ceptibility and neutron-diffraction data below the
transition seem incompatible with the presence
of local moments on the nickel sites, assumed by
previous workers, "although above T, we con-
firm White and Mott's interpretation of NiS as a
normal d-band metal. '

A semimetallic or metallic conductivity might
be considered as evidence that an antiferromag-
net is itinerant-electron type, but this condition
is insufficient because the conduction electrons
are not necessarily the magnetic electrons. The
conductivity, shown in Fig. 1(a), is substantially
independent of temperature below T„ in agree-
ment with earlier work. " It would be consistent
with NiS being either a degenerate semiconductor
or a semimetal below T, although the electronic-

specific-heat coefficient, y = 0.9 + 0.4 m J/mole
K', ' favors the semimetallic interpI etation.
Above T, the conductivity has a normal metallic
temperature dependence. To show that NiS is
an itinerant-electron antiferromagnet, it is suffi-
cient to show that the magnetic electrons are
itinerant. We do this by pointing out that the sus-
ceptibility is inconsistent with the existence of S
= 1 local moments, and that the ordered moment
varies as a function of cell parameter to an ex-
tent highly unlikely if the moments are localized.

Our first evidence in favor of a band model for
the nickel moments is provided by the suscepti-
bility, Fig. 1(b): Both g~~ and y~ are remarkably
independent of temperature in the antiferromag-
netic phase. If y~~(T) —

X (T) is fitted with the
standard local-moment model, "the extrapolated
Neel temperature would be -1600 K, implying
unprec edented superexchange interactions. How-

ever, both the nickel moment' and the hyperfine
field on "Fe impurities" decrease by 10%%uo in the
range 0& T & T„giving an extrapolated Neel tern-
perature of only -400 K if local moments are as-
sumed. "'" The inconsistency vanishes with a
band model. The simplest is the Stoner-Lidiard
model. " The intersublattice exchange, which we
assume to be dominant, is determined to be AH'

= 0.18 eV from the temperature dependence of
the nickel sublattice magnetization and its re-
duced value at T = 0, &, =0.7. The perpendicular
susceptibility is given by

Xi =~~okp. /&~,

where N, is the number of electrons in the mag-
netically polarized band (two per nickel atom).
The calculated value is g~ = 3.96x10 ' emu/g, in
good agreement with observation [Fig. 1(b)j. The
parallel susceptibility, unlike the perpendicular
susceptibility, depends on the form of the density
of states which is not yet known with any certain-
ty in NiS. Nevertheless, it should be rather inde-
pendent of temperature, and tend to a nonzero
value as T -0." The recent theory of Brandt
and Gross" for itinerant-electron antiferromag-
nets also predicts thai y, varies little between
T =0 and TN provided there is no Hubbard gap at
T = 0. This is consistent with the semimetallic
behavior below T, . The spin-wave dispersion
relation for NiS was found to be very steep, "and
also implies a very high extrapolated Neel tem-
perature if interpreted on a local-moment model.
As it appears this is noi the case"'", the stiff
spin waves should rather be regarded as evidence
for itinerant-electron antiferromagneiism. "
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TABLE I. Data on five samples of Ni&. ~S.

Moment
at 4.2 K

{I 8)

Transition
temperature

{K)

0.000
0.007
0.015
0.024
0.035

1.45 + 0.20
1.29 +0.10
1.17 +0.10
1.00 ~0.10
0 QO ~".30

264+5
240+5
196 ~5
146 +6

2.702 +0.005
2.694 ~0.005
2.692 +0.005
2.687 ~0.005
2.659 + 0.005

2.402 +0.005
2.398 ~0.005
2.397 + 0.005
2.393 +0.005
2.383 +0.005

properties of the antiferromagnetic state from
measurements in the paramagnetic state because
they are different phases, separated by a first-
order transition.

%e have argued here that nickel sulphide is an
itinerant-electron antiferromagnet because the
magnetic electrons are delocalized, and must be
described by a band model. However, the break-
dovrn of the Mott insulating state does not inevit-
ably require the disappearance of local, Hund's-
rule moments. %hen the electrons are delocal-
ized for only a small fraction of the time, re-
maining highly correlated for most of the time,
an antiferromagnetic metal with quite different
magnetic properties from Nis results. A possi-
ble example is FeS, adhere the low-lying a-spin
electrons are localized, and perhaps only the sin-
gle P-spin electron at the top of the band is itin-
erant. A transition from local-moment to band-
moment behavior in the antiferromagnetic metal
with decreasing lattice parameter is conceivable,
though no example is knwvn to the authors.
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