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ESR Observation of the I'g Excited State of Er®* in the Dilute Alloy PdEr
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We report the first ESR signal of an excited crystalline state (I';) in a metal (PdET).
The intensity of the I'y isotropic resonance compared to the I‘,,( %) resonances of the
ground-state quartet allows the determination of the energy scaling parameter W of the
crystalline field. A more precise value is deduced from the splitting of the transitions
1—2 and 3— 4 of the I'y{® ground state: W= —0.163+0.015°K, in accordance with the

work of Praddaude.

The effect of excited crystalline-field states
on the relaxation rate of the ground-state mul-
tiplet has recently been observed in dilute al-
loys. Davidov et al.’ measured the temperature
dependence of the Er®** ESR linewidth in AuEr
and from this deduced a value of the energy se-
paration A between the I', ground-state doublet
and the first-excited I'y(*) quartet. In a previous
paper Devine, Zingg, and Moret? measured the
ESR in PdEr single crystals. The ground state
of Er®* was found to be a I';(®) quartet. We have
since observed a new resonance signal in PdEr,
whose g value and temperature behavior indicate

that it is due to the first-excited I'; doublet. The
amplitude of the signal is related to the energy
separation between the I',®) and I'; levels, and
allows a direct determination of the crystalline-
field energy scaling parameter W.

The Er®** free ion has a J=4 multiplet ground
state which reduces in a cubic crystalline field
to three I'; quartets, one I', doublet, and one
I'; doublet. Devine, Zingg, and Moret® observed
all possible transitions in the 1"3(3) ground-state
quartet and interpreted them with the effective-
spin-Hamiltonian formalism?® (S§=3%). They found
an x value as defined by Lea, Leask, and Wolf*
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FIG. 1. Zeeman energy levels of the ground and

first excited states of Er’* in a cubic crystal field.
The magnetic field is applied along [111] and the crys-
tal field parameters are x=+0.47, W= = 0.16°K. The
possible transitions at a microwave frequency w,/2m
=9500 MHz are indicated. The transition 1—4 is for-
bidden when T || [111].

equal to 0.47. However, this formalism does
not explain the observed splitting between the
transition 1 -2 and 3 -4 (see Fig. 1), nor does
it give any information on the energy scaling pa-
rameter W. Instead, the spin Hamiltonian for
the full ground-state J multiplet is to be used,
as Praddaude demonstrated first for PdDy and

also for PdEr (see Praddaude and co-workers® ™),

New ESR measurements were made on PdEr
single crystals with nominal concentrations 1500
ppm (sample A), 1000 ppm (sample B), and 800
ppm (sample C). The dilute alloys were pre-
pared in an arc furnace under an argon atmos-
phere. Sample A was grown by the floating-zone
technique; samples B and C were prepared by
recrystallization. Previous results on sample
C were reported in Ref. 2. The sample was
glued onto the vertical wall of a rectangular cav-
ity (TE,,, mode), the microwave magnetic field
H,(¢) being vertical and parallel to the crystal
axis [110]. The static magnetic field H rotated
in the horizontal plane.

In addition to the I';®) resonance lines we ob-
served an isotropic resonance signal at g=5.8
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FIG. 2. ESR spectra of Er’* in Pd. Spectra a to d,
obtained with sample A (1500 ppm) and H along [111].
The low-field line corresponds to the excited doublet
(transition 5— 6) and the high-field one to transition
2— 3 of the I'{¥ ground quartet. The increase of the
relative intensity of the excited state with temperature
is readily seen. Spectra e to g, obtained with sample
B (1000 ppm) at constant temperature T =9.3°K. The
high-field line (transition 2— 3) changes position ac-
cording to the orientation of H whereas the low-field
line (transition 5— 6) has an isotropic g value.

+ 0.1, which appears at approximately 5.5°K and
broadens beyond detection at about 12°K. Fig-
ure 2 (spectra a-d) shows the evolution of the
signal as a function of temperature with H par-
allel to the [111] axis. We also give the observed
spectra (e-g) for different orientations of the
magnetic field at constant temperature. The
striking feature of the signal is the increase of
its amplitude relative to that of the strong 2 -3
transition of the ground-state quartet when in-
creasing the temperature (see Fig. 3). This
strongly suggests that the isotropic signal is
due to an excited state.

A well-defined splitting of 1~2 and 3 -4 tran-
sitions has already been observed for sample
C (see Fig. 3 in Ref. 2). From the dependence
of their intensities as a function of temperature
we can conclude that the high-field line corre-
sponds to the transition 1 -2, It has been sug-
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FIG. 3. Ratio of intensities of I'; excited state (tran-
sition 5— 6) and transition 2— 3 of ground-state quartet
as a function of inverse temperature. The values
should be on a straight line whose slope gives the ener-
gy separation A between the ground and first excited
states. The straight line a corresponds to 1500 ppm
(crosses) and 1000 ppm (triangles) with H along [111],
B to 1000 ppm (circles) with H along [110], and y to 800
ppm (squares) with H along [110]. The points on the
vertical axis (T =) correspond to the theoretical tran-
sition-probability ratios Wg,/W,s in the [110] (circles)
and [111] (triangles) directions.

gested® that the recrystallization technique could
leave a uniaxial distortion in the crystal which
was laminated before recrystallization. In sam-
ple C the splitting along the two equivalent direc-
tions [111] and [111] is the same; this seems to
exclude any distortion effect. We will show that
the observed splitting can be explained by the
proximity of the excited state. We give in Fig. 4
the resonance fields of the transitions 1 -2 and
3 -4 as a function of the magnetic-field orienta-
tion for sample C. Even at the lowest tempera-
ture the transitions 1 -2 and 3 -4 were not split
in samples A and B where only one broad line
was observed (AH ~420x 100 Oe).

The Hamiltonian of the Er** ion in a cubic
crystal field and in the presence of a magnetic
field H is

¥ =3sree + W[x0,/F +(1 - |x )0,/ F,)
+gJI“'Bﬁ'5v (1)

where J is the total angular momentum of the
ion, g,’ is an “isotropic” effective Landé fac-
tor which takes into account the exchange inter-
action with the conduction electrons, O, and O
are the fourth- and sixth-degree cubic operators,
and F, and F, are multiplying factors, respec-
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FIG. 4. Resonance fields of the transitions 1— 2 and
3—4 as a function of angle for 800-ppm PdEr. The
magnetic field rotates in the plane (110) and forms an
angle 6 with [001]. The theoretical curves were calcu-
lated with the parameters x=0.47, W= —0.16°K, and
&, =1.135 for a microwave frequency w,/27=9500 MHz.

tively 60 and 13860 for Er®*. In the case of
PdDy, Praddaude and co-workers®® suggested
that the energy levels of the ground-state multi-
plet are significantly modified by the proximity
of the excited crystalline levels. We diagonal-
ized the full Hamiltonian (1) within the subspace
formed by the sixteen (2J +1) eigenvectors |J,
M;) of the operator J,. The energy levels and
wave functions depend on x, on W, and on the mag-
nitude and orientation of the static field H with
respect to the axis of quantization (z direction),
chosen as the crystallographic [001] axis. The
calculation shows that the g value of the 2—~3
transition is virtually W independent; using the
experimental resonance fields for this transition
we find the parameter x =+ 0.47+0.005 and g,’
=1,135+0.01. For x =+0.47 the first excited
state is a I'; doublet. The calculated energy
separation of the transition 5 -6 does not depend
much on W and yields an isotropic g value equal
t0 Siheor = 5.67 (with g, =1.135). Given the error
on g,’, this value is in good agreement with the
measured g value for the new line: ge,,=5.8
+0.1.

The intensity of a magnetic dipole transition
between two states |k) and |I) is given by

exp(- E, /kT)
¥ 2iexp(- E/kT)

x [1 - exp(-hw, /kT), (2)

Iy=W

where the transition probability per unit time
W,; (multiplied by a Boltzmann factor) is pro-
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portional to KIIH,-J k)%, with |k) and |I) eigen-
vectors of the full Hamiltonian (1) and H, the
magnitude of the rf field. The intensity ratio be-
tween transitions 5 -6 and 2 -~ 3 is then given to
a very good approximation by (W,,/W,,) exp(- A/
kT). As a function of 1/7 it is a straight line
with a slope — A/k in a semilogarithmic plot.

In Fig. 3 we give the best straight-line fits for
three cases; from their slopes we find A=(14
+4)°K corresponding to W=(- 0,143 + 0.04)°K.
Large errors in the determination of the inten-
sities do not allow us to assign a more accurate
value to A. The intensity ratio at high temper-
atures can be calculated with the known W,, val-
ues. The agreement is not good for the straight
lines o and y (see Fig. 3); also, we do not under-
stand exactly why the relative intensities for
sample C are smaller (see discussion below).

A better determination of W is possible by
utilizing the splitting of the resonance lines of
transitions 1 -2 and 3 -4 in sample C. This
has a maximum value of 185+ 20 Oe when H is
parallel to [111]. We calculated the splitting as
a function of W by diagonalizing (1) with H along
[111]. On fitting with the measured splitting we
obtain W =(-0.163+0,015)°K, which is in good
agreement with that obtained from the intensity
behavior. For this value of W we have drawn
on Fig. 4 the theoretical resonance fields for the
transitions 1-~2 and 3 —-4. The agreement with
the measured angular dependence is excellent
and shows that the observed splitting in sample
C is indeed due to the proximity of the excited
doublet.

As mentioned in the experimental part no split-
ting was observed in samples A and B, It is pos-
sible that local distortions in these crystals lead
to a spread in the energy separation A. The res-
onance fields for transitions 2-3, 1-3, 2-4,
1-4, and 5~ 6 do not depend appreciably on W;
we thus expect narrow lines even in the presence
of a distribution of W values. However, transi-
tions 1-2 and 3 —~4 depend considerably on W,
and a distribution of Wcould explain the observed
broad lines in samples A and B. Such local dis-
tortion could also partially explain the difference
in the intensities of the excited-state resonance
line between samples A or B and C.

We also looked for possible deviations of the
linear relation between temperature and line-
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width; there is no such observable deviation in
PdEr. This is in good agreement with a calcula-
tion, generalizing Hirst’s formula,® of the effect
of excited crystalline states on the linewidth of
the ground-state multiplet. More details will be
reported later.

Knowing W one can calculate the fourth- and
sixth-order crystal field parameters C, and C,.
We find C,=Wx/F 8=(-26.4+3)°K and C,= W(1
- Ix|)/Fgy=(-2.73£0.3)°K, where for Er®* the
values B and y, respectively, are 4.44x107° and
2.07x107%, C, and C4 have a sign opposite to
the prediction of a naive point-charge model.
This points to the strong contribution of the con-
duction and 5d electrons.™
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