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A way of resolving the difference between the Fermi-Landau and multiperipheral pic-
tures of particle production is suggested. The basic observation is that if the Fermi-Lan-
dau fluid is already one~dimensional in the formation stage, then the entropy will be great-
ly reduced compared to the standard treatment. This allows the possibility for logarith-
mic growth with energy of the multiplicity, in agreement with the multiperipheral picture.

A question of fundamental importance to the
development of a theory of strong-interaction
physics is why elementary particles are copious-
ly produced at very high energies (= 10% GeV).
Although this question has been asked for more
than thirty years,' a universally compelling an-
swer has not yet been given. One answer was
proposed almost twenty years ago by Fermi,?
and subsequently generalized by Landau,? to the
effect that a very high-energy hadron-hadron col-
lision produced a highly excited fluid of “premat-
ter” from which elementary particles were formed.
Though specific ideas of the formation process
differed, general agreement was reached that
the multiplicity should grow like a power of s,
the most probable value® being }:
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The attractive feature of the more sophisticated
models leading to Eq. (1) is the possibility of ob-
taining the equations governing the behavior of
the excited fluid from a polynomial field theory?*;
the precise nature of the field theory determines
in a direct way the multiplicity growth. The con-
nection to a field theory then relates the copious
particle production to the fundamental properties
of Lorentz invariance, unitarity, and crossing
symmetry expected from any field theoretic
formulation.

In the past several years, a more phenomeno-
logical approach has been taken towards under-
standing particle production. Motivated to a
large extent by the ideas of the multiperipheral
model of Fubini and co-workers,® a detailed pic-
ture of multiparticle scattering has been produced
from high-energy data taken under controlled
conditions.® This picture includes such important
ideas as transverse-momentum damping, Regge
factorization, and Feynman scaling. Taken to-
gether these ideas imply the existence of an iso-
morphism between the description of multipar-
ticle production and the coordinate description of
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a classical many-body system.” This isomor-
phism, which is usually labeled as the Feynman
fluid analogy, provides a generalization of the
Amati-Bertocchi-Fubini-Stanghellini-Tonin multi-
peripheral picture. To a large extent this picture
has been constructed inductively from the data,
and it should be no surprise if its basic proper-
ties differ from the earlier field-theoretic pic-
ture.

Indeed it is the case that the generalized multi-
peripheral picture requires the multiplicity to
increase logarithmically with energy,

(2)

as opposed to the power behavior of Eq. (1). The
logarithmic growth is a direct consequence of the
assumption of transverse-momentum damping,
and the requirement that a factorizable Regge
singularity determines the leading energy be-
havior of cross sections. It is therefore clear
that the difference between (1) and (2) represents
a difference in principle between the field-theo-
retic and multiperipheral approaches. Moreover,
because of the numerical similarity between Ins
and s¥* over experimentally accessible energies,
present data do not favor one behavior over the
other.

The main intent of this note is to suggest a way
of reconciling the above discrepancy. The sug-
gestion is that the experimentally observed trans-
verse-momentum cutoff is not properly taken
into account in the hydrodynamic approach. In
this approach there are three stages: the colli-
sion and formation of the highly excited fluid;
the adiabatic expression of the fluid; the conden-
sation of the fluid into particles. Regardless of
the complications of the last two stages, the as-
sumption is that the total entropy S remains con-
stant. Further it is assumed that the multiplicity
is proportional to the entropy. The origin of the
power growth in multiplicity is therefore in the
power growth of the entropy with energy in the
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very first stage, before the hydrodynamic equa-
tions are applied. For this reason the Fermi
statistical model which assumes no expansion
stage gives the same multiplicity as the hydro-
dynamic model. This fact will also allow us to
investigate the effects on multiplicity of various
assumptions about the formation stage without
having to explicitly consider the way in which the
fluid expands or condenses into particles. We
retain the same physical assumptions during the
last two phases as are contained in the hydrody-
namic model.

The basic observation to be made is that if at
the formation stage, the fluid is already damped
in transverse momentum, then the entropy will
be greatly reduced compared to the assumption
of no damping. An example will make this idea
clear. For the calculation of S and 7 we can con-
sider Fermi-like independent-emission models,

0P=7 I [ rp )", P), (@

where V can in principle depend upon Vs, and
f(p,) is an arbitrary function to be specified be-
low. A standard way to treat such phase-space
integrals (3) is to form the Laplace transform®

o, (B)= fe' 8- Py (P)d*P. (4)

The total cross section @=23,0,(8) then has the
form of a grand canonical partition function. The
four-vector g* is a generalization of the inverse
temperature. Calculations of integrals of the
form (3) are treated in detail in the literature
and will not be reproduced here.!® For us the es-
sential points to recall are the following: (i) In
such models an entropy S can be defined analogous
to the (-~ 1Inp) in statistical mechanics, where p
gives the density of states; (ii) for a large class
of matrix elements including the class (3), 7

«§; (iii) in the simple case that V is independent
of s and particles are made independently [f(p,)
=1], #xs"% (iv) where the additional information
is added that particles are produced with a trans-
verse momentum damping f =f(p), then #7 <lns.
Thus the knowledge of transverse-momentum
damping dramatically and necessarily lowers the
rate at which the entropy (or multiplicity) in-
creases with energy.

The conclusion we draw is that if transverse-
momentum damping is present already at the
formation stage in the Fermi-Landau picture of
particle production, then the entropy, and hence
particle multiplicity, will grow less fast than

has previously been assumed. If this is the case,
then the logarithmic growth found in the gener-
alized multiperipheral picture is not necessarily
incompatible. The inclusion of transverse-mo-
mentum damping at the formation state is also
bound to cause a quantitative change in the way
in which the fluid expands and condenses into
particles. We conjecture that it might in fact be
possible to arrange for the resulting spectra to
be compatible with the multiperipheral picture.

In practice, the idea of transverse-momentum
damping in the hydrodynamic model would be im-
posed on the prematter distribution function di-
rectly, not through the Fermi-like independent-
emission model (3). In so doing one would note
the following. Since entropy is conserved, the
multiplicity growth with s depends only upon the
velocity of sound ¢ which is determined by the
equation of state.* The exact value of ¢ depends
upon the detailed shape of the prematter distribu-
tion functions. If this distribution function is
essentially one-dimensional, as is implied by
having transverse-momentum damping, then p
=€ and we have 7~s° This again illustrates that
the particle multiplicity grows less fast than s,
We believe the correct interpretation of s° is in
fact Ins, since in this one-dimensional model,
what one should obtain is a rapidity plateau whose
height is independent of energy; the kinematic
bounds on the width of the plateau then supply the
Ins growth,
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