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Magnetic fields in excess of 10 G are expected to arise in laser-produced plasmas in
which a discontinuity in atomic weight of the target occurs in the focal spot. The upper
limit to B is controlled by Quid disassembly of the field layer due to magnetic pressure.
This may provide a means for direct measurement of these fields in laser-produced
plasmas .

V when the B field has spread through a layer of
thickness of order 1O p.m. We calculate the field
values reached during the diffusion-dominated
phase.

Thus, Eq. (1) can be solved if we (i) "freeze"
the hydrodynamics, (ii) neglect the x dependence

S=- vN, x vr, , vN—, x(v p„), (2)

with the radiation pressure tensor given by"

P„=——(c5E 6E + 5858) + 1 —(5E'+ 58'), (3)

The spontaneous generation of magnetic fields of order IO' 6 has been reported to occur' ' in high-
density kilovolt plasmas produced by focusing a Nd laser pulse onto a solid target. Here we show that
fields in excess of 10 G may be produced in such plasmas if a discontinuity in atomic weight occurs
in the focal spot. Such high fieMs should, be directly detectable via the Zeeman splittings of x-ray
lines emitted from the plasma.

The magnetic field equation' is
2 I

= Vx (Vx B) ——V x fr ~ (Vx B)] V x (Vx g) x H + 8, (1)
ag 4n 4m' gN,

where r is the resistivity and the source S has a
thermal and a radiation-pressure part,

where e = 1 —co, '/~', and 5E and 58 are the high-
frequency electric and magnetic fieMs of the
laser pulse. Now if a discontinuity in target
material is arranged, such as in the sandwich
target shown in Fig. 1, a very large electron
density gradient, VN„ is produced at the compo-
sition interface since the average ion charge
Z (N, = ZN, ) will in-general differ in the two ma-
terials. This gradient is along the z axis, where-
as VT, and V' ~ P„are approximately along the
beam direction at the center of the focal spot.
This generates a large source of 8 field along
the y direction.

Since the interface source layer is very thin
(typically less then 1 p, m), field diffusion out of
the layer initially competes with the source 8
in Eq. (1). Field diffusion only slows down to
speeds less than the fluid disassembly velocity
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FIG. 1. Field produced by a focused laser pulse inci-
dent on a composition discontinuity. Although the criti-
cal depths for maximum energy deposition occur at dif-
ferent positions on the two sides, the displacement be-
tween them can be made less than the x temperature
gradient scale for two materials not too widely spaced
in atomic weight.
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of I3 compared to its much faster z dependence,
and (iii) neglect the f and z dependence of T and
&, and the nonlinear terms in 8 (these latter are
of order P ' ~1). For the geometry of Fig. 1,
Eq. (1) then becomes

finite conductivity & (—=o'~).
The electron density variation N, is modeled

by choosing

1O%, ~, 1
(8)

C2 $2+
, +Sz),

8f 4m@ Bg
(4) Similarly, a local temperature-gradient scale in

the z direction is defined by

eN~ 8s Bx

Note that l ~ and l„can be either positive or neg-whieh represents the localized source together
with diffusion away from the interface due to the ative, and usually l1 r I » I l„l. The solution to

4 with 8 t = 0 = 0 then follows as

8=-2~,( ~~
' 1

foal

e (el„lr) N~ r N, AT,

where

is characteristic field diffusion time, the strong-field (Q, v, »1) perpendicular conductivity o is

v = 7.2 x 10'T,'i'/Z lnA (10)

with T, in degrees Kelvin, and 4(y) = 2& 'f~"Ch exp(-x'). The radiation-pressure part of (8) was writ-
ten'

where 8,~ is the radiation energy density in the focal spot and E the absorption coefficient. Radiation
reflection' also contributes to (11) but has been neglected.

The solution (8) has features shown in Fig. 2. The field diffuses a distance

z, =-1„(f/~,)~' = e(f/we) ~'

away from the interface in a time f after the laser pulse is initiated. The value of 8 at the origin (z
=0), and for times t»Te, becomes

l, (S lnA) '~'

After some time the field (13) can grow to a
magnitude such that P= 1. lf this occurs the field
layer then acts as a piston and drives a shock in-
to the adjacent plasma. Fluid expansion of the 8
layer then follows on a time scale -ze/V„and
competes with further growth in B. Only very
short pulses (for which r~ & zz/V„) could give
rise to fields in excess of this P= 1 limit, i.e.,
for most cases the maximum 8 field is

(13)

z

8„=-8x 10 '(N, T, +N, T, )~'. (14)
zB

Now typically we are interested in Nd pulses
of energy & 50 J, focal spot radii & 50 p,m, and

FIG. 2. Diffusion of magnetic Qux away from its
source near the orijin.
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pulse times - 1 nsec incident on a high atomic
weight target. ' For T, -5~ 10'K, Z-20, lnA

-10, the field diffuses a distance zz-45% t cm,
e.g. , @~=4.5 p,m for t=10 "sec.

Very little diffusive broadening of the compo-
sition jump occurs. In a time t the interface
broadens via ion diffusion to a thickness l„given
by X, (t/~, ) ', where the scattering time r, for
ions of charge Ze on side 1 by ions of charge
(Z+ 5Z)e on side 2 is' (for the simplest case 5Z

« Z)
g'2 T a/2

m, XZ''
For example, if T, = 10"K (T, & T,), ZN, =N,
=10"cm ', Z-20, lnA-10, m, /m~ -10', then
for t=0.3 nsee, l„= 0.2 p.m.

For a jump with gradient scale 1„-1 pm (note
also l„»A.z, -10 ' cm}, the field diffusion time
rz [Eq. (9)] is 4x 10 "sec, so that the large-t
formula (13) applies for B, throughout most of
the pulse duration. For example, if T, = 5 x 10',
lz=4x 10 ', 2 =20, lnA-10, we find

Emission from the region of maximum B(z),
i.e., B„could be selectively observed by seed-
ing the interface with a small amount of material,
e.g. , Al, for which hydrogenic and He lines have

been identified. Smearing of the splitting would

then arise only from the x and t dependence of

8,. However the effect may still appear as a
splitting instead of a broadening in time-inte-
grated profiles since the x-ray lines are prin-
cipally emitted when T (and therefore B) is large.

Finally we note that the question of electrosta-
tic instability and anomalous conductivity arises
for the current layer a,ssociated with the 8 field.
However, for highly charged ions [use of pa-
rameters below Eq. (15)] the ion collision fre-
quency v, ' is comparable to the ion plasma fre-
quency at the critical depth [~;= su, (Zm, /m, }~'
-2x 10"]. Thus, ion sound instability is colli-
sionally damped and the. classical conductivity
(10) is expected to apply.

The author has enjoyed useful discussions with

D. J. Nagel and other colleagues at the Naval Re-
search Laboratory and Science Applications Inc.

4 ex 1012tl/2 1+ 2' &xf e

X,AT,

8~=4.2x 10 N

The field 8, reaches its maximum value 8„ in a
time

Kl 8l 8~ 4Ã
N, AT, N~

Since for most cases T, increases to its max-
imum on the same time scale as the laser pulse
width, 7~, an optimum situation involves match-

ing ri with t„. For a sample case ihN, /N~i'
= 0.1 and 4„'= 0, these formulas show that &,
would rise to a value 8„=-1.3 x 10' 0 in t„=0.1

nsec at the critical depth where N, = 10 ' cm '.
However, heating also penetrates into the over-
dense regions beyond the critical depth for laser
energy deposition. If similar temperatures oc-
cur in the region N, =10", B„becomes 4.2x 10'
0 which is reached in f„=1nsec. For such
fields, Zeexpan splitting of x-ray lines is about

equal to their Doppler broadening [RQ, =(1.2
x 10 ' eV 1 G)B], and should become detectable.
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