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A microscopic theory of the flow alignment in nematic liquid crystals is presented.
The calculation is based on a thermodynamic sum rule derived earlier. The temperature
dependence of the flow-alignment angle is obtained in terms of the nematic order parame-
ter S(T}. The theory favors stable flow alignment, but the orientational instability found
by Gahwiller cannot be ruled out.

The hydrodynamic theory of nematic liquid
crystals' ' predicts that under stationary shear
flow, the director, or averaged molecular orien-
tation, stabilizes at an angle 6 rela, tive to the di-
rection of flow which is given by

cos(26) = —y, )y, = 1)A,

where y, and —y, are usually interpreted as two
counteracting viscous torque coefficients. In iso-
tropic molecular liquids there is a weak flow
alignment at an angle of 45' relative to the direc-
tion of flow. ' Strong alignment, at an angle 8(7')
which is much smaller than 45" and has a marked
temperature dependence, is a phenomenon specif-
ic to liquid crystals, and it is therefore of partic-
ular interest.

In this Letter I present a simple calculation
from first principles of the temperature-depen-
dent flow-alignment angle 6(T). To my knowledge
this is the first microscopic calculation of a hy-
drodynamic coefficient for nematics. The result
reported here agrees with the earlier model cal-
culations by Helfrich' at low temperature when
the nematic order is perfect and the molecules
are assumed to be rigid ellipsoids. The present

theory is in good, if qualitative, agreement with
recent measurements of 8(T) by Meiboom and
Hewitt' which were performed on three nematic
substances, PAA (P-azoxyanisole), MBBA (N-[P-
methoxybenzylidine ] -p -butylaniline), and HBAB

( p -n-hexyloxybenzylidine -p '-aminobenzonitrile).
At variance with these experiments are measure-
ments by Gahwiller' who reported that for HBAB
flow alignment does not occur below 91.8'C.
%hile the present theory does not conclusively
rule out this possibility, which amounts to A &1
in Eq. (1), it makes it unlikely.

In the rederivation of nematic hydrodynamics
given by Forster et al. ,

"
y,

' appears as a rota-
tional relaxation coefficient, as it does in the
original Leslie-Ericksen theory. However, my
rederivation insists that y, is not an independent
dissipative coefficient. Rather, the ratio A= —y, /
y, enters the theory as an independent reactive
coefficient which characterizes the reversible re-
sponse of the director field to symmetric local
stress. One might expect, therefore„ that A can
be computed by equilibrium sta, tistical mechan-
ics.

This is true at least for the dominant part of A.
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By means of a time-correlation function analysis, ' I have shown that the following sum rule holds:

—,'(A —1) —p =lim(1/ik)fd'(r —r')e ' " ' '([g, (r), n, (r')]») (2)

where the limit in k is to be taken from the 1 direction, in keeping with the uniaxial nematic symme-
try. ' g, (r) =n' g(r) is the component of the microscopic momentum density parallel to the equilibrium
director n, and n, (r) is the transverse component of the local microscopic director. The subscript
PB indicates a classics, l Poisson bracket. Equation (2), with p =0, has also been given by Martin,
Parodi, and Pershan. ' Its analog in a superfluid expresses the superfluid density p, as a commutator
involving the mass density p and the microscopic superfluid momentum-density operator g, . p in

Eq. (2) is a dynamical contribution. While there is no rigorous argument to suggest that p = 0, or even
to predict the sign of p, I shall argue below that P is so srna, ll that it can be omitted from Eq. (2).

The remaining, and principal, contribution to A. can be easily calculated. In terms of the symmetric
and traceless local order parameter R, , (r), introduced by de Gennes and Lubensky, "n, is defined by

n, (r) -=~R„(r)/(R„(r)).
We take for R,.~

the quadrupolar term in the mass density,

R,, (r)=Z~" [&, "&,"'-,.'~„(&")']~(r-r"),

g(r)=gp '5(r-r '), (4)

where r ~, p ~, and m ' are respectively the coordinate, momentum, and mass of the 4th particle
in the o.th molecule; $™'=r' —r"; and r is the molecular center of mass. Omitting only terms of
order V'V', we then easily obtain the Poisson bracket:

([~,( ), R;„( ')] &=[&„q,,+&„q;,-&„q,, - '&, ,q„,]~,&( — ')

+ ~q [~„.e, , + f „,&, , —
~2a „&,, ] V, &(r —r '),

where

q, q
——(R,, (r))=n(I, .—Ig)S(n,'n, ' —p6, „), .

q =n(I, + 2I,).
(8)

Here, S = z (3 cos'(6 ) —1) is the conventional di-
mensionless order parameter, n=N/V is the
molecular number density, and I, = I, and 2I, = I,
+I, are given by

tan'(6(T)]= f~ —S(T)) /[~+ 2S(T)], (8)

where n =(I,+ 2I,)/(I, —I,) is a molecular con-
stant. All temperature dependence is contained
in the orientational order parameter S(T). Equa-

I,. is, essentially, the ith component of the molec-
ular moment of inertia, evaluated in the system
of principal molecular axes. Equation (6) con-
tains the well-justified assumption of rigid,
though not necessarily symmetric, melocules.
The 3 axis is the molecular axis which is prefer-
entially oriented in the nematic phas" presum-
ably the long axis of the molecule.

From these equations, neglecting p in Eq. (2),
we obtain for the flow-alignment angle"

tion (8) is my main result.
Even in the absence of quantitative theory of

S(T),"Eq. (8) agrees in all qualitative aspects
with the experiments by Meiboom and Hewitt. In
the isotropic phase, S=O, and Frenkel's result
6 = 45' obtains. In the nematic phase, S is be-
lieved to increase from about 0.4 or 0.5 at 7, to
values about 0.8. According to Eq. (12), there-
fore, the flow-alignment angle 6I should decrease
with decreasing temperature from its maximum
at T = T, , reaching a plateau value of tan'O'-I, /I,
as S-1. This is in qualitative agreement with
the measurements by Meiboom and Hewitt. For
rigid symmetric ellipsoids of length a and width

6, I,/I, = (b/a)', which is the result obtained by
Helfrich' on the basis of rather more formidable,
and less convincing, considerations. Qualitative-

in &PAA~+K, BBA~+HBAB we expect that
~ PAA ~ h; BBA ~ HBAB as observed'

ln Fig. 1 I have plotted the function, cos26/(3
—cos26), which according to the present theory
should equal S(T)/2o. The values of 6(T) are
taken from Ref. 6. As the figure indicates, the
data are qualitatively consistent with Eq. (8) and
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(9)

ings have recently received additional support in

the shear torque measurements of Pieranski and

Guyon. " By the argument just given, since o is
smaller for HBAB that it is for PAA and MBBA,
HBAB is indeed the most likely candidate of the
three materials to exhibit the instability.

In a recent Letter, Clark" has pointed out that
the coefficient A. is continuous across the nematie-
isotropic transition. There is no conflict with

our result, 3A = 1+ 2o/S: While we obtain the
Frenkel result A=~ for 7 & T, , Clark's consider-
ations here apply to the A which would be mea-
sured on a microscopic volume element whose
linear dimension is smaller than the correlation
length g. Near T„$~200 A.
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FIG. 1. Flow-alignment angle 8 for three nematic
liquid crystals as a function of the temperature T. T
is the clear-point temperature. The ordinate gives
cos28/(3 —cos20), predicted to be proportional to the
degree of order S(T). Data from Ref. 6.

the expected T dependence of the order parameter. '- No quantitative agreement can be claimed, how-
ever .From mean-field theory and some experiment~i evidence, " one expects a sharper rise of S(T)
with increasing T, —T. Similarly, if reasonable values for I,/I, are inserted in Eq. (8), the theory is
quantitatively consistent with experiment only if one assumes that even just below T„S(T)takes on

values near 0.8. Better agreement could be achieved with the conflicting data obtained by Gahwiller
for MBBA.

So long as p in Eq. (2) can be neglected, the present theory predicts that A & 1 for all elongated mol-
ecules (f, &1,), i.e., stable flow alignment. A molecular expression for P can be written down, ' name-
ly the Kubo-like formula

j =lim(1/k~T)g dte "jd'(r —r') (o„(r, t)ri, (r', 0)),

where o»(r, t) is the microscopic stress tensor.
j(j. is therefore determined by nonhydrodynamie,
rapid, and spatially short-ranged fluctuations,
and it should carry little temperature depen-
dence. A crude estimate of j. can be obtained as
follows: The Kubo expressions for the transport
coefficients" v, and $ = y,

' are obtained by re-
placing, in (9), respectively n, by o» for v„and
0/3 by i, for y, '. This would lead to the order
of-magnitude expectation that Ip l=(v, /y, )'~.
Note, however, that the time-correlation func-
tion in (9) must vanish at t = 0 becuase of time-
reversal symmetry, thus depressing the value
of P. Thus we expect that I p l «( v, /y, )'". For
PAA v3 0 .024 and y, & 0.05 . Thus, while the
case is not cleareut, it is unlikely that p contri-
butes significantly to the flow-alignment angle.

Equation (8) suggests, finally, that increasing
the chain length of a nematic molecule tends to
decrease the flow-alignment angle. It mould be
interesting to check this prediction on a homolo-
gous series of nernatic compounds. If G5,hmiller's
orientational instability occurs at all, it is more
likely to be found for the longer members of a
homologous series. For HBAB, Gahmiller's find-
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I analyze Graham's theory of the threshold region of the convection instability in a fluid
layer heated from below. I consider the situation where vertical boundary walls insure
that a single spatial mode dominates in the threshold region. Equilibrium properties and
the temporal correlation times for both the amplitude and intensity of that mode are pre-
sented.

In an incisive analysis, ' Graham has introduced
a generalized thermodynamic potential which gov-
erns the stability, the dynamics, and the fluctua-
tions in a fluid layer heated from below near the
onset of convection. Graham's formulation incor-
porates both fluctuating forces and the relevant
nonlinearities of the hydrodynamic equations to
describe the appearance of finite-amplitude con-
vection at the Bernard point. With this theory we
can understand the detailed dynamics of fluids
for Rayleigh numbers in the immediate neighbor-
hood of the critical Rayleigh number which marks
the abrupt appearance of convection in the linear
theory. ' In this note I apply Graha, m's theory to
the experimentally realistic situation of convec-
tion in a fluid layer enclosed by rigid vertical
walls. I present detailed results on the equili-
brium and dynamic behavior of the fluid through-
out the convection threshold region.

For experimentally realizable convection cavi-
ties, the horizontal dimensions are much smaller
than the correlation length of fluctuations near
the Bernard point. Thus the rotational and trans-
lational symmetry in the fluid plane is effectively
broken. To analyze the spatial dependence of the
fluid flow one must then calculate the normal
modes for the particular geometry of the convec-
tion cavity. ' While the details of such a. calcula-
tion are indeed complex, the general features
are clear. For example, in a rectangular cavity,
rolls parallel to the short wall with a wavelength
near the critical wavelength (for the infinite-lay-
er problem) suffer the least damping. Thus by
properly choosing the dimensions of the experi-
mental cavity, one can insure that one normal

mode dominates in the threshold region. It is
just this one-mode case I investigate.

With the spatial dependence of the convection
determined from the normal-mode analysis, only
the amplitude, w, of that normal mode remains
as a fluctuating quantity. Thus Graham's func-
tional Fokker-Planck equation reduces to an or-
dinary Fokker-Planck equation' for the probabili-
ty density, Qw), of that one stochastic variable:

eg a eC ag—=-IW=——g +-
~w Bw Bw

where 4= w'/4 —aw'/2; w measures the ampli-
tude of the flow in units' such that the vertical
component of the fluid velocity is v, (x,y, z) =wU,
x+(x,y, z), with vo= (9Q/4rVP2)'"(v/f);

a = [ao]z = [(9m'/2P) (V/Q& )'"](B—8,) /ft,

measures the deviation from the critical Ray-
leigh number; i' measures the time in multiples
of [3(V/Qr)'"(1+P)/P](P/v); 4(x, y, z) gives the
spatial dependence of the relevant normal mode
and is normalized so that f4(x, i', z)'dV/V=1; and
r = J+(x,y, z)'dV!V~ 2 is the only quantity which
depends on the details of the normal mode (the
integrals extend over the entire convection cavi-
ty volume, V).

The equilibrium solution to the Fokker-Planck
equation is

Wo(w) =%exp(- 4) =X exp(- ll' !4+aw /2), (2)

where X normalizes the integral of So over all w

to unity. The mean intensity (I) (I =w'), the size
of its fluctuations, (&I') (&I = I —(I)), and the
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