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It is shown that the Schrodinger equation for electronic wave functions can be modified
so that its solutions describe a molecule as a collection of interacting atoms or other
units. The interaction potential between electrons localized in different units is the weak-
est one possible that is consistent with the constraint that the corresponding localized
wave function yield upon symmetry projection one solution to the Schrodinger equation.
The binding energy of the system can be calculated directly.

We understand the chemistry and physics of
molecules in terms of "weakly" interacting units:
atoms, ions, electronic shells, etc. If we wish
to improve the quantitative predictions based on
these physical models by including the interac-
tions between the units, we must define the inter-
action potentials. The theorem proven here de-
fines these potentials without introducing approxi-
mations. If we wish to calculate ab initio an elec-
tronic wave function, the units in a molecule are
hidden by the indistinguishability of electrons.
The theorem proven here allows us to calculate
a wave function which is least distorted from a
product of the wave functions of the noninteract-
ing units. I believe the theorem offers a new
starting point for formal and computational stud-
ies of electronic structure.

The published works most closely related to
this paper are by Klein' and the author. ' Nei-
ther's formulation involves approximations, but
both have unnecessarily constrained their wave
functions to be sums of a finite number of eigen-
functions of the molecular Hamiltonian. s In the
present theory the wave function to be determined
is the sum of an infinite number of such eigen-
functions. In other respects the present formula-
tion parallels the author's previous work. '

The next most relevant works are those of Gil-
bert' and the author. "' They based their works
on the Hartree-Fock approximation to the many-
electron theory and generalizations of that theory.
I do not use such approximations in this paper.

Other theories of the interactions between units
in molecules have involved approximations which
are much less well understood than the Hartree-
Fock approximation or have depended intrinsical-
ly upon the use of perturbation methods. I shall.
discuss these theories in detail elsewhere. ' '

Let 8 be the spin-independent, nonrelativistic
Hamiltonian for an N-electron molecule in the
Born-Oppenheimer approximation. Let 4';" be

an eigenfunction of H, where p, specifies the mul-
tiplicity, the irreducible representation (IR) of
the symmetric group, and the IR of the molecu-
lar point group to which the eigenfunction belongs;
i specifies the z component of the total spin and
the rows of the IR's to which it belongs; and o.

specifies the different energy states having the
same p. and i. Let E " be the eigenvalue of H
which belongs to 4 ~;".

Conceptually divide an X-electron molecule in-
to units (atoms, ions, shells, etc. ) and assign
each electron to a specific unit. Let h, be the
Hamiltonian of the unit a when all interactions
between units have been turned off. Define II,
=Q,h, . If h, p, =E,y„ then defining Fo= II, y,
and & =Q,E„one has H,F'=e'F'. We assume
that the q, depend on both the position and spin
coordinates of the electrons assigned to a.

Let p;;" be the projection operator which acting
on any X-electron function gives a function having
the properties specified by p, and i, or gives
zero. We wish to determine a function 6 of the
position and spin coordinates of the N electrons
which is related to I' and, for one particular
choice of p. and i, satisfies the constraint

for M ' =(G Ip;;"IG) w 0. The most general form
that G can have and satisfy (1) is

G = C „;~4'„;"+ Q (1 —6q„5;,)C ~, % q, ', (2)
Ii8

where the coefficients C»' are arbitrary except
that C „;"40. It is essential to extend the sum in

(2) over aLL eigenfunctions of H including those
which violate the Pauli principle.

We can choose the C»" in (2) as we wish and
still satisfy (1). We choose them so that G will
be least distorted from I'" in the sense that

(gH, iG&~&GiG) =. = e~rem».

If the constraint (2) were not imposed, F would
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The sum over P, v, and i includes all eigenfunc-
tions of H as in (2). Note that since the eigen-
functions of H form a complete set, +8%z, ",'
&(0'8, "i = p, , '. Since Q„,p, ,

" =1, we have

q y u)(y a~+ I

From (2) and (4) it follows that QG =G. From
(3) we find that

QH, QG = eG.

(4)

(5)

Equation (5) can be used to determine G, how-
ever, only if 4„;~ is known.

In stating the following theorem, we redefine
Q and G, then show that the new definitions im-
ply the old. We ga. in as a consequence the abili-
ty to determine G a.nd Q without having first to
know 4

Theorem If p;;"6 40 and if 6 satisfies for an
arbitrary operator U the equation

(H QUQ)G -= eG,

where

Q =M p;;"iG)(Gip;;" +1 —p;;"

and M ' =(G (p;;"iG), then

M'"p, , ~C =+„,~.

(6a)

(6b)

Furthermore, if U = V, =H —H„ then 6 satisfies
(5) and is least distorted from Eo in the sense of
Eq. (3).

Proof: Note that QG =G follows from the defini-
tion of Q in (6b). Thus multiplication of (6a) by
1 —Q gives

(1 —Q)HG =0.

Since p;;"H=Hp, ,
" and p;;"Q =M p;;"iG)(G Ip, ;",

multiplication of (7) by p;;" yields

Hp;;"G =M(G ip;;"HiG)p;;"G. (6)

Thus p;;"G is one of the eigenfunctions of H. It
follows that Eqs. (6b) and (4) define the same

satisfy (3). We call a function which satisfies
(2) and (3) a minimally distorted Localized wave
function. More restrictive constra. ints than (1)
can be imposed. They correspond to using fewer
4 8,

" in (2) and, by (3), defining a less well local-
ized wave function than G. '

One can derive from (3) and (2) a secular equa-
tion which determines the C &,

' and &. We re-
write the secular equation using the projection
oper ator

q = ie „,~')(e „,~~ + Q (1 —5„„&,, )I4 „'~(+„'i.
Uj8

operator. Multiplication of (6a) by Q and use of
QG =G gives

Q(H-U)QG =eG.

Thus, if we set U = V„we obtain Eq. (5). There-
fore G satisfies Eqs. (1) and (3) if it satisfies
Eq. (6b), q. e.d.

There is nothing in the statement or proof of
the theorem which limits its applicability to the
lowest energy sta.te belonging to p. . Whether or
not one can solve (6a) depends only on how a,ccu-
rately I" approximates G.

I have solved Eq. (6a) approximately for H, '
and H, with U = V, by both a perturbation method'
and an iterative configuration-interaction meth-
od. ~" For H, the latter method has converged
for the equilibrium nuclear separation of 1.4 a.u.
Programming has begun to extend the calcula-
tions to three- and four-electron diatomic corn-
plexes.

The effect of QV, Q in Eq. (6a) is to screen V, ,

One can see this by considering the effect of add-
ing to Q as defined in (4) more projectors of the
form l4q;")(Ila;"l. In the limit in which all@&;"
have been included, we have Q = 1. Then QV,Q
exactly cancels V, in (6a) and G =Eo Thus fo. r
Q 0 1, the potential QV, Q must partia, lly cancel
V, . The potential of interaction between elec-
trons in different units in a molecule, V, —QV, Q,
is thus a weaker potential than V, .

The theorem proven in this Letter is one of a,

series of theorems concerning wave functions re-
lated to F by condition (3), but upon which more
stringent constraints than (1) are imposed. These
constraints lead to wave functions which are less
accurate approximations to E by the condition
(3) than is G.'

There are criteria other than (3) by which loca. l-
ized wave functions may be defined. ". They cor-
respond to choices of U different from V, and are
straightforward generalizations of the criteria
considered by Gilbert for localized orbitals. '

The solution of (6a) gives directly no physically
measurable quantities. The eigenvalue & is the
energy of the molecule in no physical state. The
difference & —c' is useful when U = V, . Then, it
is a quantitative measure of the distortion of G

from I' due to the interactions between the units
in a, molecule. It can thus indicate how accurate-
ly our physical understanding of a molecule in
terms of atoms, shells, etc. , approximates math-
ematical reality. Comparison of G and I' yields
more detailed information.
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We can obtain measurable quantities from G in

most cases only by first using (1) to obtain 4„;t',
then calculating matrix elements. An interesting
special case is the energy E ". We can calcu-
late the binding energy E„"—e' of the units with-
out having to calculate separately E~" and & and
then take the difference between these potentially
large numbers. Multiply (6) from the left by (Fol

and use H:Hy+ Vy and H, I' = coI"0 to obtain

This equation is valid even when t" and I'0 are ap-
proximated by expansions in terms of a finite set
of N-electron functions. '

I have asserted that V, —QV,Q is the weakest
possible interaction potential given the constraint
(1) and a chosen resolution of the molecule into
units. I rea. son as follows: Equation (2) shows
the most general form G can have and satisfy (1).
Equation (3) defines the arbitrary coefficients in

(2) so that G differs minimally from I' . Since G

satisfies (6a), V, —QV, Q distorts Eo into G.
Since the distortion is minimal, V, —QV, Q must
be the weakest potential consistent with (2) and

the chosen resolution of the molecule into inter-
acting units. We are free to choose the units so
as to ensure that V, —QV, Q is weak.

The usefulness of Eq. (6a) as a practical start-
ing point for ab initio calculations must be tested
by calculation. We have only determined that it
is possible to solve it. On the other hand, the
usefulness of Eq. (6a) for formal studies should
be obvious. It defines without resort to approxi-
mation the weakest potential by which the elec-
trons of the different "physical" units in a mol-
ecule interact. The electronic wave function
calculated using this potential is least distorted
from a product of wave functions for the nonin-
teracting units in a molecule, but yields upon
symmetry projection one solution to the Schro-
dinger equation. Thus as a starting point for

formal studies Eq. (6a) eliminates the need to
infer or guess an interaction potantial which cor-
rectly accounts for the indistinguishability of
electrons.
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