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Energy Dependence of Factorizable Models for Elastic Scattering
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%e discuss properties of high-energy P-P scattering in terms of models where the ei-
konal is a function of energy times a function of impact parameter (factorizable models).
Using the eikonal determined from the data at one fixed energy, we deduce that the sec-
ondary diffraction maximum should rise with increasing energy if the total cross section
rises. Further data, from National Accelerator Laboratory energies and up, would be
of interest to decide for or against factorizable models.

Some typical general features of factorizable
eikonal models are discussed here, with specific
reference to proton-proton scattering in the in-
tersecting-storage-rings (ISR) energy range.
The eikonal in such models, iQ(b, s), is given as
the product of a function g(b), depending on im-
pact parameter b, and a function w(s), depending
on the square of the c.m. energy, i.e.,

n(b, s) =w(s)g(b).

Neglecting spin effects, do/dt = ~i 0 v F(s, t) I' is
given in terms of Q by

F(s, f) = 5 bdb(1 —e "~ ''l) J~(b& t), -(2)

where —t is the square of the c.m. momentum
transfer and J', is the cylindrical Bessel function
of order zero. We make the assumptions that
spin effects are negligible and that F(s, f) is
dominantly real (except perhaps near the diffrac-
tion zero).

The main result of our study is concerned with
the energy dependence of the secondary diffrac-
tion maximum observed in p-p scattering at the
ISR. The result is that present experimental in-
formation from the ISR on increasing p-p total
cross sections" and diffractive structure' ' in
elastic scattering at a given fixed energy, as-
suming a factorizable eikonal, implies an in-
crease of about a factor of 2 of the secondary
diffraction maximum in dojdt from the bottom
to the top of the ISR energy range. This situation
should not change appreciably with the addition
of a modest phase to F(s, t). This provides a
definite experimental test for the validity of fac-
torizable models.

Before proceeding to the details of our argu-
ment, we give a brief historical review concern-

ing the origin of factorizable models. Froissart, '
in the derivation of his famous bound, gave an in-
tuitive picture of how the amplitude is bounded as
the energy increases: Strong interactions at most
allow for an energy-indePendent absorptive Yu-
kawa potential with an energy -dePendent coupling
constant, the latter increasing with increasing en-
ergy. This is equivalent to a factorizable eikonal
with increasing opaqueness Q. Durand and Lipes, '
in their version of the Chou- Yang model, ' have
mentioned the possibility that the eikonal in this
model might be energy dependent and separable.
In the light of the present data, Byers, ' Kac, "and
Hayot and Sukhatme" more recently have put for-
ward this latter hypothesis explicitly, with the
opaqueness 0 being postulated as an increasing
function through the ISR energy range, in order
to account for an increasing total cross section.
Cheng, Walker, and Wu, ' on the basis of field
theoretical considerations, have given arguments
in an attempt to justify an increasing opaqueness.
Their model, which is a factorizable one, dif-
fers from the Chou- Yang-type model in the form
of the imps, ct-parameter-dependent factor g(b)
in the eikonal.

Factorizability of the eikonal clearly implies
constancy, in impact-parameter space, of the
ratio of the eikonals at two different energies.
There have been studies concerned with direct
determination from data" "of the eikonal or
related quantities. Although there are experi-
mental uncertainties, these studies do not seem
to support faetorizability.

The increase of the secondary diffraction max-
imum, pointed out above as our main result,
manifests itself in any of the studies in Refs. 9-
12, which are concerned, to various degrees of
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sF(s, t)/ss = [dlnw(s)/ds] rp(s, t),

y(s, t) = g b db Qe "J,(bv'- t ).

Since do/dt, through the ISR energy range,
changes slowly with energy, the first partial
derivative of E(s, t} with respect to s is the es-
sential quantity determining the energy variation
of the differential cross section. Furthermore,
knowing Q(b, s) at one given value of s we can,
using (3) and (4), determine some qualitative
momentum-transfer characteristics of the mod-
est energy dependence of do/dt. We have

(3)

(4)

accuracy, with accounting for present ISR data.
It showed first in the Cheng, Walker, and Wu"
model, though this model produces a "shoulder"
rather than a pronounced diffraction maximum.
It was conjectured in Ref. 11 that the increase of
the secondary diffraction maximum might hold

more generally than in the particular model con-
sidered by the authors.

The details of our analysis are as follows. We
consider the partial derivative of E(s, t} with

respect to s,

knowledge of Q(b, s) at one Particular value of s.
To determine do(s+ M, t)/dt in terms of do(s, t)/
dt, u(s) has to be known in addition.

We now consider the evaluation of q(s, t), using
the analysis of Henzi and Valin. " These authors
give the opaqueness Q = ——,

' ln(1 —d'o; „/db, db„),
where d'o;„/db„db„ is the inelastic differential
cross section in impact-parameter space. This
provides a choice of Q(b, s) yielding a detailed
fit to dk/dt for ISR data at each s over a substan-
tial range of t. Any other description providing
a detailed fit, we would consider to be adequate.
At s = 1070 GeV, for instance, the resulting
forms for Q(b, s) exp[- Q(b, s)] and bQ(b, s)
xexp[- Q(b, s)] are shown in Fig. 1. The func-
tion y(s, t), which follows from this form of
Q(b, s), has been evaluated numerically and is
shown in Fig. 2.

It is to be noted that

q'{s~ t = &0 for 0& t&t, = —0.50 (GeV/c)'« for t, &t&t, = —4.85 (GeV/c}'.,
' (7)

The function y(s, t) shows zeros at t, and t„

do' do'

dt ' dt
—(s+as, t) = —(s, t) 1+2 m(s, t)

Es, t

~(s, t) dlnw(s) (y(s, t)
E(s, t) ds F(s, t)

'

(5)

Using Eqs. (5) and (6), we can determine the
crossover points of do(s, t)/dt and do(s + ns, t)/dt
in a factorizable model. To do this, we require a 10
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FIG. 1. Q(b, s) expt-Q(b, s)j and bQ(b, s) exp[-Q(b, s)l
for s = 1070 GeV, according to the analysis of Ref. 13;
ordinate units are dimensionless.

FIG. 2. 0'(s, t ) = fg 5

dbms(b,

s) exp[- Q(b, s)] Jo(b&t )
for s =1070 GeV2, according to the input shown in
Fig. 1.
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u(s) ~s', (6)

these points determining, in the approximation
considered, crossovers of do(s, f)/dt for any
Pair of values of s in the ISR energy range. To
discuss the effect of j(s, t) through the entire
t range, we assume that the diffraction dip near
t = t, = —1.4 (GeV/c)' is due to a zero in the real
pa, rt of E(s, t) and tha. t, as already mentioned
above, the finite experimental value of do/df in
the diffraction dip is accounted for by the imag-
inary part of E(s, f), the latter being negligible
everywhere else. Two cases have now to be dis-
tinguished: case I,

u(s, f) & 0, 0 & f & f„ReEt, s, t) =-

u(s, t) &0, to & f;
and case II,

( )
u(g~f), 0&f&fo,
—u(s, I), t, &t.

For case I (II), ReF(s, f) has an odd- (even-)or-
der zero at t tp. The results of Ref. 13, on
which the present analysis is based, are in cat-
egory I.

Case I and hs O&.~t follows from Eqs. (5) and
(6) for do(s + 4s, f)/dt, combined with the be-
havior (7) of y(s, f), given that w(s) increases
with increasing s (to account for the increasing
total cross section), that for 0 ~ t &i„ the dif-
ferential cross section rises as s increases. At
f = t„do(s + ~s, f)/dt crosses below do(s, t)/dt
and for t, & t & t„ the differential cross section
falls, merging roughly with the differential cross
section at other energies at their more or less
common diffraction dip near t= Ip. The differen-
tial cross section do(s+ 6s, f)/dt rises again with
increasing hs as one approaches the secondary
maximum and finally crosses again below da(s,
t)/dt at or near f = t, .

Case II.—For this case the same situation
holds, since when u(s, t) ——u(s, f), y(s, f)
——y(s, f) There still. remains the alternative
to be considered, that the diffraction dip might
be due to a relative minimum of ReE(s, f), with
ReE(s, t,) &0, as for instance in the work of
de Groot and Miettinen. " This case is qual. ita-
tively not different from case II and similar re-
sults for the energy behavior of do/dt are ex-
pected.

In order to get some quantitative estimate for
the increase of the secondary diffraction maxi-
mum through the ISR energy range, we use for
the energy dependence ut(s) of the eikonal

where" c = 0.082. Taking, furthermore, s = 1070
Ge V' and 4s = 2380 Ge V', which cor responds to
the full ISR energy range, we find at g= —1.8
(GeV/c)', where the secondary diffraction max-
imum of do/dt occurs, from Eqs. (5) and (6), an
increase of a factor of about 2.

Such an increase is substantial and can be
checked against present and fuhare measure-
ments. There is no indication in the present
ISR data of such energy dependence. However
large —t measurements are not available at the
bottom of the ISR energy range. Such measure-
ments then are of interest, both at the ISR and
at the National Accelerator Laboratory.

We note finally that the above considerations
are of importance through the full ISR energy
range only if Regge effects from lower-lying
trajectories have disappeared. The behavior of
the differential cross sections at small —f val-
ues, specifically the small shrinkage rate, in-
dicates that this is so. It is expected then that
this will also be the case for the range of t val-
ues considered in this study.
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Solitary wave solutions of field equations of the form d &8 "y+ es'p+ o. y++' -, -A.y++l =0,
with p &0, —2, —l. , are developed. For vanishing interaction the solutions reduced to pos-
itive- or negative-frequency plane-wave solutions of the Klein-Gordon equation.

(&„s"+ m')op+ aq"" + xq ~"= 0,

with pe 0, ——,', —1. For p =-,' Eq. (1) is a scalar analog of the massive Yang-Mills field equation, while
for +=0, P = &, it becomes the field equation of the familar A. y theory.

Solitary wave solutions of Eq. (1) are

~g(k)2P e+2iPk'x 2 ) g{k}4P + 4iPk x ~-y/2P
(k} g{k}erik'r

4m'(P+1) 4m'(2P+1) (2)

Solitary wave solutions of nonlinear field equations have been studied in several areas of physics
recently. " In this note solitary wave solutions of a class of field equations for systems with polyno-
mial self-interactions are developed. These solutions reduce to positive- or negative-frequency plane-
wave solutions of the Klein-Gordon equation in the limit of vanishing coupling constants.

The field equations considered here have the form

$ = (u„k),

k ~ k =k ' —k'=m'
(3)

(4)

and A is a constant. While the solutions given in Eq. (2) can be verified by differentiation, the steps
involved are rather lengthy. However, the result can be established in the following way. Let

y =k ~ x. (5)

Then, using Eqs. (3)-(4), Eq. (1) becomes

dzy/dy'+ q+ ay""I m' x+rp""Im'=0.

Multiplying by dy/dy and integrating, one has

z(dqldy)'+ zy'+ aq""/(2p+2)m'+ay~"/(4p+2)m' = ,'B, -

where B is a constant. This equation can be separated to give

fdz [B—z' —az""/(p + 1}m' —xz "(2p + 1)m'J "'= ~ v.

For the special case 8 =0, let

q =Z2P,

dg = 2pz dg,

Equation (8}becomes

f dqq '[1+aq/(p+ 1)m'+Aq'/(2p+1)m'J '~'=+ 2i py.

(10}
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