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How to Test Scaling in Asymptotically Free Theories~
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It is shown how, in asymptotically free gauge theories, one can, given the deep-inelas-
tic structure functions for values of p in the asymptotic region, calculate explicitly the
structure functions for all larger q . The ratio of structure functions for ft)'2=50 and 5
GeV is estimated. Substantial deviations from scaling are found, as well as a dramatic

dependence, for values of 1- -4.

where g(q2) is the "effective coupling constant"
which vanishes for large q . For smaIl g~, Z„
is determined by the anomalous dimension y„of
the relevant twist-2 operator of spin.V+2:

&„(P)= exp[- f, y„(x)~x/P(x) I

(2)

where P(x) = ——,b, x'+O(x') is the standard renor-
malization group function. A~ is determined by
the second-order contribution to y„(x) = y„x'
+O(x'): A„=h, 'y". The function F„(g') will be
determined by the unknown matrix element of the
relevant operator, as well as by its Wilson coef-
ficient. As g~ vanishes it approaches some, un-
known constant:

F,(g ) =F„+O(g ).

As emphasized by Gross and Wilczek, ' and
more emphatically by Politzer, ' the approach to
the asymptotic region is controlled by the behav-
ior of g~(q'). When this is sufficiently small the
asymptotic form for M„will be valid up to terms
of order g~ itself. Also some sum rules should
be satisfied up to terms of order g . In particu-
lar the ratio of longitudinal to transverse mo-
ments should be of order g~. In t.his region g~

mill behave as

g,2
— 2jh, f,

where t = ln(q'/ p. '), p.
' being an unknown scale

parameter.
In this region one can test these theories by

(4)

Asymptotically free gauge theories'~ of the
strong interactions predict a logarithmic decrease
for the moments of the deep-inelastic structure
functions. '~ These predictions are of the form
(x =q'/2v)

M„(q') = f, dxx"E, (x, q')

& (g)+„(g),

measuring the q' dependence of the moments M„:

lnq I2 A y
M„(q') = —,M„(q")[I+O(P)].

Once these relations can be tested they mill pro-
vide extremely clean and critical tests of asymp-
totically free gauge theories. The only unknowns
are the following:

(1) The region of q' at which asymptotic behav-
ior sets in. This will be determined by the value
of q' at which g~ is small enough. To get some
idea of this we consider the popular red-white-
blue quark model. The strong interaction gauge
group is SU(3)', and b, =9/8~'. ' The effective ex-
pansion parameter in this model is then

g'/4v', ,= 4/9f.

(2) The scale parameter p. This is at present
totally undetermined, If, however, we take JL(.

= 1
GeV as a reasonable value, then the expansion
parameter above equals 0.27 for q'= 5 GeV' and
0.11 for q'= 50 GeV'. Thus one might hope to use
Eq. (5) to compare q" = 5 GeV' data with, say,
q2 = 50 GeV data. '

(3) The gauge group of the strong interactions
and the nature of the quark representations. After
all, the arguments for the red-white-blue model
are not entirely compelling. This affects 4, as
well as A„. The coefficients A„have been eval-
uated for all groups. '~" For the nonsinglet piece
of the structure functions they are given by

A —G 1 — — 4
(K+ 2)(N 3), , k 2)'

where G is totally determined by the gauge group
and the representation of the quarks. 4 If the
group is SU(3)', and the theory contains three
quark triplets, then G= —„. Increasing the num-
ber of triplets will increase G and thus lead to
larger violations of scaling (if there are three
more colored charmed quarks, G =»). Ultimately
G should be determined by experiment. The sin-
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glet coefficients are essentially identical to Eq.
(7), except that A, ""~'"=0.

Unfortunately there is little hope of testing Eq.
(5) directly in the near future, since this would
require a determination of the structure func-
tions for large q' at all values of x. Further-
more the theory itself predicts large cancelations
of the q' dependence of the structure functions
when one calculates its moments. This is be-
cause F,(x, q') will increase, with increasing q',
for small x, and decrease for x near 1, so as to
keep the area M, constant.

It would clearly be much more useful to have a
direct relation between the structure functions
themselves at different values of q'. This can be
achieved by constructing a function T(t/t', x)
whose Nth moment with respect to x yields (t/
t') "&=

(lnq "/Inq')"))). Then Eq. (5) simply states
that the Mellin transform of F,(x, q') is equal to
the product of the Mellin transforms of F,(x, q")

and of T(t/t', x). One then uses the convolution
theorem of Mellin transforms' to derive (I find
it easier here to use the variable ~ = 2v/q'=x ')

)' (v, )) f —,t, (—,, )') T( , , al'), — (8)

where

T —
~ (d = . ds

with A, the analytic continuation of A„ to Res ~ 0.
[This analytic continuation is valid, in fact, for
Res ) —1 as long as F,(cu, t) is bounded for large
(u. ]

In principle this allows one, given the function
F,(~, t'=lnq"/p') for q" in the asymptotic region,
to calculate the structure function for all larger
q' at any value of ~. In practice this relation is
made more useful by the fact that A„ is approx-
imately given for large N by

A„~G 4 ln(N+ 2) —0.69+ —,+,+. . .
2 7 2

The large-N behavior of A& will determine the kernel T for small values of co. Indeed, using the ex-
pansion (10), one easily derives'

where

P =4G lnt/t', C, = —2, C, = (3P+14)/24(P+1), C, = —(P'+ 14P+24)/48(P+1)(P+ 2), etc. (12)

The series in Eq. (11) is rapidly convergent (C~ for the calculation below is equal to —0.2) and will be
of little importance as long as ar is small (compared to ~= 5).

An important feature of Eq. (8) is that in order to determine F, (&u, t) one need only know the structure
function for ~' less than ~ at some given t'. This has two advantages. First, the region of small ~ is
most accessible experimentally for large q . Second, as long as ~ is sufficiently small, there will be
a strong enhancement of the region e' = 1 in Eq. (8) due to the rapid falloff of the structure function
near threshold. This allows one to construct an excellent approximation to Eq. (8) for 1 ( u. ( 4.

If the structure function vanishes like a power d of &u —1 as &s -1, then it follows from Eq. (8) that

Experimentally, one has from the energy range of the Stanford Linear Accelerator Center (SLAC)
that d= 3,' so that

F~(~ t ) t 0.69' 6(inc)
F,(v, t ') t' I'(4+P) (13)

should be an excellent representation of R for ~
near threshold.

In order to get an idea of how large the devia-
tions from scaling might be, a.s well as their co

dependence, let us examine Eq. (13) for the red-
white-blue SU(3)' model, where G = ~„with the A (~; 50, 5) = 0. 54 (in&a)""'. (14)

! scale parameter p, =1 GeV, and set q' = 5 GeV/2 2

and q'= 50 GeV'. In that case p =0.526. The
above formula then yields
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Explicit numerical integration of Eq. (8), using
the exact Eq. (10) for T, and the experimental
data for F,(~, 5),' show that Eq. (14) is extreme-
ly accurate for 1- ru- 4 (the error is 1/0 at &s = 2,
3% a,t (u = 3)."

This ratio then rises rapidly from threshold,
where large deviations from scaling are expect-
ed, R(1.1) =0.16, to about 0.45 at & =2, 0. 57 at
cu = 3, and 0.65 at ~ = 4. The ratio then increases
slowly, approaching 1 in the vicinity of ~™-15."
The actual numerical values of R are very insen-
sitive to the number of quark triplets [as long as
the strong gauge group is SU(3)'], but are, of

course, more sensitive to our choice of q" and
Thus R(2) will decrease (increase) by about

10/0 if we let p.
' equal & (2) and compare q'=50

GeV' with q" =2.5 GeV' (10 GeV'). "
Most interesting is the v dependence of the

ratio R for small &u predicted by Eq. (13). This
logarithmic behavior is characteristic of all as-
ymptotically free gauge theories, being a direct
consequence of the large-X behavior of the coef-
ficients A~. Luckily this is precisely the region
which is, kinematically, "most accessible for
large q'. Thus a measurement of R(v) near
threshold for large q' would provide a strong
test of asymptotic freedom.
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~ The smallness of the asymptotic form of the effec-

tive coupling constant is a necessary, but not sufficient,
condition for the onset of asymptotic behavior. To de-
termine the actual approach to asymptotic behavior one

would have to know how the effective coupling approach-
es its asymptotic form. Better yet one can use asymp-
totic sum rules to estimate the value ofg, as well as
the point at which asymptotic behavior sets in. Of par-
ticular utility is the ratio of longitudinal to transverse
structure functions, whose asymptotic size can easily
be determined.

VThis trick has been employed recently by G. Parisi
[Phys. Lett. 43B, 207 (1973)] to estimate the deviations
from scaling in a model in which the moments fall like
powers of q'.

8For &=0 I am, of course, overestimating Az (which
should vanish). The formula is extremely good for &
)0. As far as the quantitative estimates made in the
text are concerned, the effect of this approximation is
negligible since I only discuss small values of ~, 1-~
~ 4, which are sensitive to the large-& behavior of Az.
Also one notes that the structure function actually re-
ceives contributions from three separate operators,
each with its own anomalous dimensions. Again this
will be irrelevant for discussing the extrapolation to
large q for values of not too large, since in this re-
gion the falloff is dictated by the Az's quoted in the text.

~G. Miller et al. Phys. Rev. D 5, 528 (1972). We can
safely use the 'scaling" function determined at SLAG
in order to extrapolate, since for q' ranging from 5 to
10 Gev2, say, we expect from the above formula only
10% deviations from scaling even when ~ =2. However
the deviations increase again as we approach threshold.
We expect, say, a 25Vo decrease of E2 at (d =1.2 when
q' is increased from 5 to 10 GeV'. This raises the pos-
sibility that a precise measurement of E2 at SLAC in
the vicinity of ~ =1.2 could show a breakdown of scaling.

' These errors are, of course, all in the noise, com-
pared to the 25k or so theoretical uncertainty in using
the asymptotic form of the moments in a region in
which the expansion parameter is roughly 0.27.

'~For larger values of ~, A will increase with increas-
ing q . We also note that Regge behavior is consistent
with Eq. (8). Thus if E(~, q' ) exhibits Regge behavior
when ~, so will E&(~, q ). Also if one inserts
E2(~, q') =1 into Eq. (8), one reproduces for E2(~, q')
the functions constructed in Ref. 3 to illustrate the
breakdown of scaling. There, however, the deviations
from scaling were underestimated, since the actual
threshold dependence of E2(, q') was not used.

Although this region is favored by kinematics for
large q~ there are other experimental problems. Among
these are the fact that the structure functions them-
selves vanish rapidly near ~ =1, and that nuclear ef-
fects (if one uses a heavy target) increase in impor-
tance near threshold.
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