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8(X) approaches a constant along the null ray,
and the two modes travel independently of each
other towards some distant observer.

(4) The phase associated with the two normal
modes is S+9. In the WKB approximation (9 «S)
the gradient of the phase S yields the propaga-
tion vector 0 of the electromagnetic (or gravita-
tional) wave trains. It points along the direction
along which a train of waves is propagating. By
contrast, the gradient of the beating phase 0,

(BmG/c')'~e, e "I', (2'I)

is the propagation vector of the beat-frequency
waves that modulate the wave train in accordance
with Eq. (25). Thus along the null ray of a prop-
agating WEB mode there is an alternate bunching
of electromagnetic and gravitational energy. The
separation between the events of maximum bunch-
ing is one quarter of a beating cycle.

(5) The time-averaged (over one cycle) stress
energies for electromagnetic and gravitational
radiation are given, respectively, by

Over a beat cycle the ratio of these two energies
is, according to Eq. (25), of order unity:

T ~ /T o~=(SG/c )8 /g 2=1

In view of the above observations one expects,
for example, that all electromagnetic radiation,
regardless of how it is produced, will. ultimately
be converted totally into gravitational radiation.
The only proviso is that the wave train move in

a background electromagnetic field long enough
for the beating phase to change by 68 = m/2 along
the null ray.

Thus a charged black hole acts as a catalyst
for converting suitably polarized and directed
electromagnetic radiation totally into gravitation-
al radiation. In other words, the effective cou-
pling between gravitational radiation and moving
charged matter is of the same order as that be-
tween electromagnetic radiation and charged
matter.

H. Ruffini and A. Treves, Astrophys. Lett. 13, 109
(1973).

F. Zerilli (to be published) has gone a 1ong way to-
ward Qnding exact equations for the normal modes of a
Heissner- Nordstrgm black hole.

M. Johnston, R. Huffini, and F. Zerilli, Phys. Hev.
Lett. 31, 1317 (1973), have found numerically that for
matter moving near a Heissner-Nordstrpm black hole
the generated electromagnetic radiation is of the same
order of magnitude as gravitational radiation.

V. Noncrief (to be pub1ished) has found the odd-par-
ity normal modes of a Reissner-Nordstrpm black hole.

R. A. Isaacson, Phys. Hev. 166, 1263, 1272 (1969).
In these perturbed equations we have a1ready assumed

that the potentials on the left-hand side satisfy the Lo-
rentz gauge. In this paper the Latin subscripts range
over 0, 1, 2, 3.

'See, for example, H. P. Geroch, J. Math. Phys.
(N.Y.) 13, 956 (1972), Appendix B.

More precisely, the quasi-particle states associated
with the normal modes should perhaps be called elec-
tromagnetic gravitons (or equivalentIy, gravitational
photons) .
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We present a representation of the Poincare group corresponding to a direct1y interacting
system of particles valid to order 1/& which satisfies the condition of separability of the
interaction.

In 1953, Bakamjian and Thomas' implemented
a program proposed by Dirac' in 1949 in which a

relativistic dynamics of interacting particles was
to be constructed using as dynamical variables
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about our more general solution is that in the
presence of spin-dependent or momentum-depen-
dent, or, if applicable, isospin-dependent, two-
body potentials, the relativistic (order 1/c') in-
teraction must generally include three-body as
well as two-body terms in order to have both
separability and covariance to the indicated or-
der. This is reminiscent of the results of rela-
tivistic field theories which also generally pro-
duce effective many-body forces when interac-
tion is produced by a mediating field, rather than
directly. '

Space does not permit a derivation of our re-
sult here even though the derivation is quite
straightforward. However, we can quote the re-
sults for the generators of the Poincarb group,
and it may then be directly verified by the reader
that they satisfy the well-known commutation
relations' for these generators while their sepa-
rability will be quite manifest.

The generators of space translations (momen-
tum), space rotations (angular momentum}, time
translations (Hamiltonian), and Lorentz trans-
formations (boost operator} are written, respec
tively, as P, J, H, and K. The representation of
the first two are given by'

only the canonical position, momentum, and spin
variables for a finite number K of particles.
Somewhat later one of the present authors' redis-
covered the results of Bakamjian and Thomas by
a method employing an integration of the I ie alge-
bra for the Poincarb group using a formal expan-
sion in powers of 1/c'. In that paper it was
stressed that for such a theory to be physically
acceptable it should possess a property called
separability of the interaction. This requires
that if the system of particles is divided in any
way into two subsystems infinitely far removed
from one another, the representation of the Poin-
car0 group for the total system should assume
the form of a direct product of the representa-
tions of the Poincarb group corresponding to each
of the subsystems. While this problem of con-
structing separable interactions was not solved
in that paper, Coester4 later showed that one
could construct a separable interaction for a
theory of the Bakamjian-Thomas type in the case
of a system of three particles; however, the
method could not be extended to a larger number.

The present authors recently became aware of
a pair of papers which appeared in 1959, the
first by Shirokov' and the second by Zhivopistsev,
Perolomov, and Shirokov' (ZPS), which also ap-
proached the direct relativistic interaction prob-
lem by an expansion in powers of 1/c' but which
did not attempt to proceed beyond the order 1/c'.
In the first paper a solution is obtained by Shiro-
kov for a system of only two particles yielding a
Hamiltonian covariant to order 1/c' and trivially
satisfying separability. The extension to an N-
particle system by ZPS consists in taking the
relativistic interaction to terms of order 1/c' to
be the sum over all pairs of the two-particle in-
teraction terms found by Shirokov. However, ex-
cept in certain special instances we have been
able to
covari
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P=Z„p„&=K (r„xp„+s ).

where r „, p„, and s „are the respective posi-
tion, momentum, and spin of the p, th particle.
The Hamiltonian is given by

H= T+U +U '+
7 = Q „(m „c'+p „'/2m„-p „'/8m„'c'. . .).

The nonrelativistic interaction U" is assumed to
be given by

show that such a result cannot be both where u „„( is a function of r „,—= r &- r „p&,
ant and separable. =(m,p„—m„p, )/M„, (with hi„„=m„+ m, ), s„,
e basis of the work of Refs. 3 and 6 we and s „which is rotationally invariant, symmet-

een able to produce a general construction ric in its two subscripts, and zero if the sub-
presentation of the Poincare-group gener- scripts are equal. This implies that it also com-
or a system of N particles which is both mutes with R„,=(m„r„+m, r, )/A1„„P„,=p „
ant to order 1/c' and possesses a separa- +p„and with J„,=r„&&p„+r,&p, +s„+s,. U('&

eraction. If the nonrelativistic interaction will be separable if each u„, vanishes suffi-
n particles consists of the sum of two- ciently rapidly as r„,—-.' We shall return to
rms each of which depends only on the L'", the correction to the interaction of order
separation of the two particles, then our 1/c', shortly.

reduces to that of ZPS. What is novel A particula, r solution for the boost operator to
order 1/c' is then given by

2 2P p P p ~ s p xp p ~
(g)Q„[ „r~ —ip„]+2 Q„rp2 +2 r„
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where

V")=, &R„„u„P',2c

and this is also clearly separable. (V "l is discussed in Ref. 3.)
The heart of the problem is the determination of Li and here the critical commutator of the Lie al-

gebra is [K, H]=i P. It can be shown that, to within an integration constant, Uol can always be deter-
mined from this commutator provided only that U" commute with R, P, and J, where R denotes the
nonrelativistic center of mass

R=Q„, n;„r„(~„~i„.
Furthermore, with the separable V" above, the solution for U'~ can be written as the sum of two
terms U, " and U, &. The first of these is the sum of two-body terms and is identical with the result
of ZPS, though written here slightly differently:

2

c'„, 2M„,' ~" 4 „m,hi„.

, [(r„. P„.)(P„. P„.)+(P„.p„.)(P„,. „,), „,']
su (o)

ppU i U9 pU I
(I)

mq m,

where the commutation properties of u„,'i with R„„P„„, and J„,have been explicitly used.
However, if the commutator [V "i, U~'] which enters into the commutation relation for [K, 8] fails to

vanish [and this will generally be the case if u„„(0) depends on spin or momentum (or isospin) operators
for the two particles p and v], then it will consist of three-body terms. To satisfy the Lie algebra of
the generators it is then necessary that U ' contain three-body terms, which we write in the form"

. [ R "' "'] + [R u ") u "l] (2)2c2 m + M + I "
Pu Pv ' Pa + 4v Pv ' Po m + gyesjl, p, O p 1/ 0

It will be noted that this term is also separable as a consequence of the assumed properties of the

u„,"' as r„,-~. The full result is then a covariant representation of the Lie algebra for all the gener-
ators of the Poincare group to order 1(c', with a separable interaction.

%'e close with a few further remarks. %e note first that the above solutions for V"' and U" are
particular solutions of the Lie algebra. A more general separable form for V ', consisting still of
two-body terms only, is obtained from that given above by adding to it

C p p

where o„„ is an arbitrary rotationally invariant function of P„„r„,„p„„,s„, and s„, which is sym-
metric in p. and v and zero if p. = v. This generates a change in the above form for L ", given by

2

(3)2c' 2m„m ' "' c'», u' ' M

In addition, a more general solution for U' can be obtained by adding to the above solution any term
of order I/c' which is the sum of two-body terms, three-body terms, etc., provided that they are
separable and commute with R, P, and J. This requires for two-body terms that each commute with
the corresponding two-body "contributions" to these operators, i.e., R„„P„„J„„.Similarly, for
three-body terms, each must commute with

'6't pr p + m I,r U + m gr ~R
nz„+ m, + m, +p +pPij a

etc. Terms satisfying these conditions are easy to construct. (It is possible to include in U'Ol three-
body, four-body, etc., terms, but this will then generally require the introduction of higher-particle-
number terms in U'" as a result of terms generated in the commutator [V~'), U(0)], except, as previous-
ly, when this commutator vanishes as when all terms involve only particle positions. )
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All of the above expressions (or generaliza-
tions) for V('& and U "a,re, of course, consistent
with and included in the arbitrariness permitted
by the Lie algebra of the Poincarb group. Thus,
although imposing separability definitely restricts
the relativistic corrections to the interaction to
order 1/c' beyond that required by relativistic in-
variance, the relativistic corrections are still
not completely prescribed by the condition of
separability.

One application of dynamical theories of this
type has been to calculate relativistic corrections
to phenomenological potentials between particles.
For this purpose all two-body terms in U 'i which
commute with the center of mass R of the whole
system can be lumped together with U"' in the
phenomenological potential. However, terms
like those in (1), (2), and (3) above do not gener-
ally commute with R. While one can rewrite the
latter by expressing all momenta in terms of the
total momentum P of the system and relative mo-
menta, and terms involving only the latter might
in principle be incorporated in the phenomenolog-
ical potential, one must be very careful to avoid
forfeiting separability. Thus, if one works in the
frame in which the total momentum of the system
is zero, these latter terms will in general be
many-body terms and will find no natural place
in a phenomenological potential; if they are dis-
carded, separability is destroyed.

While the results presented here would consti-
tute a more reliable basis for attempting such
relativistic corrections than any previously em-
ployed, it still suffers from the substantial de-
gree of arbitrariness pointed out above and the

need for further physical input is clearly indi-
cated before any truly reliable calculations can
be carried out.

The derivation of the results presented here
were particularly stimulated by a conversation
of one of the authors (L.L.F.) with Dr. F. Coester
to whom we are, in consequence, deeply indebt-
ed.

*Work partially performed under the auspices of the
U.S. Atomic Energy Commission.
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lim fexp(ia' pp&)up& exp(-ia' p~&)1=0.
a~'
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U3 "is a translationally invariant function by noting that
the commutator of P with U3 results in a sum over
terms antisymmetric in two indices, and so vanishes.
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HALL EFFECT OF SILVER IONS IN RbAg4I,
SINGLE CRYSTALS. T. Kaneda and E. Mizuki
[Phys. Rev Lett. 29,. 937 (1972)].

The conductivity in RbAg, I, in the dark as a
function of reciprocal temperature is not straight
as shown in the original Fig. 1, but somewhat ex-
ponential as is presented in the figure herewith.
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