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Near a charged black hole {or any other space-time permeated by a steady electromag-
netic field) an electromagnetic mode oscillates in sympathy with a suitably polarized grav-
itational mode (and conversely). Two co-traveling modes beat against each other, ex-
changing totally and periodically their common energy along their history near the black
hole. The black hole serves therefore as a catalyst for converting electromagnetic into
gravitational radiation. Thus the effective coupling of charged matter with gravitational
radiation is of the same order of magnitude as with electromagnetic radiation.
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Here g„and F„are the coefficients of the back-
ground space-time geometry and the background
electromagnetic field, respectively. Perturba-
tions in the metric (k„) and in the electromag-
netic field (5 F„)are obtained from the "gravita-
tional potentials, " („, and the electromagnetic
vector potential, g, , by
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The interaction between the gravitational and the
electromagnetic modes arises from perturba-
tions of the electromagnetic stress energy tensor
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Within an astrophysical context, one cannot
exclude the possibility that a charged black hole
is the result of the gravitational coljapse -of a
suitably rotating star with a nonzero net charge. '
In order to determine the electromagnetic and
gravitational radiation of such a system during
or after collapse, it is very helpful if one deter-
mines the normal modes of the perturbations of
a charged black hole. ' ' %e consider perturba-
tions on a space-time permeated by an as yet un-
specified electromagnetic field. In order to learn
as rapidly as possible the general behavior of
these perturbations, we consider them in the
high-frequency (WKB} approximation. ' Thus we
focus our attention on the linearized Einstein-
Maxwell system, '

and of the perturbed connection, '

In the %KB approximation, we introduce
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Here e, and e., characterize the polarization for
electromagnetic and gravitational radiation in the
usual way, ' and
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are the %KB wave functions consisting of the
real slowly varying amplitudes 8~ and 8~ and
the rapidly varying phase factor e', whose gra-
dient yields the propagation vector

k, = v.S. (6)

0=v g =ik e gs, (Qa)

0 —v ill

q
—

~k ill + (9b)

With the help of Eqs. (2) and (6), we substitute
Eqs. (4} and (5) into Eqs. (la) and (lb}, respec
tively, introduce the two %KB wave functions in
Eqs. (7a) and (7b), contract Eqs. (la) and (1b)
against the complex conjugates e„and e. of the
polarizations in Eqs. (6a) and (6b), make use of

The traceless Lorentz gauge in the %KB approxi-
mation demands that

"F, F~„—~,~k "F pF„

(4)

use Eqs. (9)-(10), and thus finally obtain, with
the help of Eqs. (8)-(10), two coupled equations
for the electromagnetic and the gravitational
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modes:

VV go
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Here

(11a)
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reveals that

V (8, 'k ) =+ 2i(sc/e')'~n k tS, . (21)

Introduce the phase of the beating between elec-
tromagnetic and gravitational WKB modes [Eqs.
(7)]:

a =e, e" I', (12}
0(h) = —(sc/c')'~fn (dx /dh)dh. (22)

provides the polarization-dependent coupling
along the path of the wave vector k . To solve
the equations, we symmetrize them by introduc-
ing the dimensionless variables
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In terms of these variables the coupled equations
are
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In other words, along the direction of propaga-
tion k, the complex amplitudes of the two elec-
trograviton modes obey the equation

Here the line integral is taken along the null ray
of the WKB mode in question. Use the integrat-
ing factor e'"e; then, together with Eq. (19),
Eq. (21) becomes

V"V 4 =2i(SG/e')'i'n k C

V V C, = —2i(8C/c')"n k C, .
Their normal modes,

4'. =e'c~ se'

satisfy the uncoupled equations
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Equating real and imaginary parts of the com-
plex amplitudes sl, in Eqs. (17) and (24) yields
the amplitudes of the gravitational and the elec-
tromagnetic modes, respectively:

SG = [QG'+ (sc/c')Ss']'~ cose(h), (25a)

Bs= (c'/sc)'~[fZG'+ (SG/c')Qs']'~ sin8 (h). (25b)

Each mode constitutes a linear combination of a
gravitational and of an electromagnetic WEB
mode,

Here the factor in square brackets is the magni-
tude of the conserved current of electrogravitons
and is the phase angle in Eq. (22):

C, = [a,*i(SG/&')'~e, ]e"=I,e" (17) 6 (h) = —f(sc/c')e, e"F,„(dx"/dh) dh (26)

According to Eqs. (14) the scalar amplitudes of
the photon and graviton fields satisfy

V"(Qo'k )= (16G/c')n k 8~8s,
V (Qs'k ) = —2n„k hoQs.
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Consequently, neither graviton number nor pho-
ton number is conserved. Nevertheless, from
Eqs. (16) we discover in the usual way that the
magnitude of the scalar amplitude of a normal
mode, Eq. (17), satisfies

V"(ie,i'k. ) = 0,

where
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In other words the number of eLectrogravitons'
characterized by Eq. (17) is conserved.

If photon and graviton number are not conserved
along the rays of a traveling WEB wave, how do
they vary? A standard WKB analysis' of Eq. (16)
in terms of the complex amplitude 8 of Eq. (17)

Besides the conclusions relating to gravitons,
photons, and electrogravitons in Eqs. (18)-(20),
one can make the following observations on the
basis of Eqs. (17) and (25).

(1) As one follows the space-time orbit of a
WEB traveling mode, one will observe that elec-
tromagnetic modes always oscillate in sympathy
with gravitational modes (and vice versa) near a
charged black hole.

(2) Both modes beat against each other as they
propagate through space-time. The phase which
characterizes the beat oscillations changes along
the propagation null ray according to Eq. (26).
The evolution of this phase depends upon (a) the
polarization of the gravitation wave, (b) the
polarization of the electromagnetic wave, (c) the
ambient background electromagnetic field, and
(d) the direction of the polarizations relative to
the background electromagnetic field.

(3}As the propagating mode travels away from
the black hole, the background electromagnetic
field goes to zero, the beating ceases, the phase
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8(X) approaches a constant along the null ray,
and the two modes travel independently of each
other towards some distant observer.

(4) The phase associated with the two normal
modes is S+9. In the WKB approximation (9 «S)
the gradient of the phase S yields the propaga-
tion vector 0 of the electromagnetic (or gravita-
tional) wave trains. It points along the direction
along which a train of waves is propagating. By
contrast, the gradient of the beating phase 0,

(BmG/c')'~e, e "I', (2'I)

is the propagation vector of the beat-frequency
waves that modulate the wave train in accordance
with Eq. (25). Thus along the null ray of a prop-
agating WEB mode there is an alternate bunching
of electromagnetic and gravitational energy. The
separation between the events of maximum bunch-
ing is one quarter of a beating cycle.

(5) The time-averaged (over one cycle) stress
energies for electromagnetic and gravitational
radiation are given, respectively, by

Over a beat cycle the ratio of these two energies
is, according to Eq. (25), of order unity:

T ~ /T o~=(SG/c )8 /g 2=1

In view of the above observations one expects,
for example, that all electromagnetic radiation,
regardless of how it is produced, will. ultimately
be converted totally into gravitational radiation.
The only proviso is that the wave train move in

a background electromagnetic field long enough
for the beating phase to change by 68 = m/2 along
the null ray.

Thus a charged black hole acts as a catalyst
for converting suitably polarized and directed
electromagnetic radiation totally into gravitation-
al radiation. In other words, the effective cou-
pling between gravitational radiation and moving
charged matter is of the same order as that be-
tween electromagnetic radiation and charged
matter.
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More precisely, the quasi-particle states associated
with the normal modes should perhaps be called elec-
tromagnetic gravitons (or equivalentIy, gravitational
photons) .
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We present a representation of the Poincare group corresponding to a direct1y interacting
system of particles valid to order 1/& which satisfies the condition of separability of the
interaction.

In 1953, Bakamjian and Thomas' implemented
a program proposed by Dirac' in 1949 in which a

relativistic dynamics of interacting particles was
to be constructed using as dynamical variables


